zoukankan      html  css  js  c++  java
  • 最大似然估计和最大后验概率MAP

      最大似然估计是一种奇妙的东西,我觉得发明这种估计的人特别才华。如果是我,觉得很难凭空想到这样做。

      极大似然估计和贝叶斯估计分别代表了频率派和贝叶斯派的观点。频率派认为,参数是客观存在的,只是未知而矣。因此,频率派最关心极大似然函数,只要参数求出来了,给定自变量X,Y也就固定了,极大似然估计如下所示:

      相反的,贝叶斯派认为参数也是随机的,和一般随机变量没有本质区别,正是因为参数不能固定,当给定一个输入x后,我们不能用一个确定的y表示输出结果,必须用一个概率的方式表达出来,所以贝叶斯学派的预测值是一个期望值,如下所示:

                                    

    其中x表示输入,y表示输出,D表示训练数据集,是模型参数

      该公式称为全贝叶斯预测。现在的问题是如何求(后验概率),根据贝叶斯公式我们有:

      可惜的是,上面的后验概率通常是很难计算的,因为要对所有的参数进行积分,不能找到一个典型的闭合解(解析解)。在这种情况下,我们采用了一种近似的方法求后验概率,这就是最大后验概率。

      最大后验概率和极大似然估计很像,只是多了一项先验分布,它体现了贝叶斯认为参数也是随机变量的观点,在实际运算中通常通过超参数给出先验分布。

      从以上可以看出,一方面,极大似然估计和最大后验概率都是参数的点估计。在频率学派中,参数固定了,预测值也就固定了。最大后验概率是贝叶斯学派的一种近似手段,因为完全贝叶斯估计不一定可行。另一方面,最大后验概率可以看作是对先验和MLE的一种折衷,如果数据量足够大,最大后验概率和最大似然估计趋向于一致,如果数据为0,最大后验仅由先验决定。

    参考链接:http://blog.csdn.net/lzt1983/article/details/10131839

  • 相关阅读:
    告别ThinkPHP6的异常页面, 让我们来拥抱whoops吧
    ThinkPHP6 上传图片代码demo
    【ThinkPHP6:从TP3升级到放弃】1. 前言及准备工作
    PHP数字金额转换大写金额
    提高PHP开发效率, PhpStorm必装的几款插件
    5分钟弄懂Docker!
    GitHub 上排名前 100 的 IOS 开源库简介
    GitHub 上排名前 100 的 Android 开源库简介
    android线程消息传递机制——Looper,Handler,Message
    Android Activity:四种启动模式,Intent Flags和任务栈
  • 原文地址:https://www.cnblogs.com/Wanggcong/p/4693362.html
Copyright © 2011-2022 走看看