zoukankan      html  css  js  c++  java
  • triplet改进,变种

    1.一开始是FaceNet

    2.一个重要的改进:image-based, Ding etal.

    3.对于样本挑选的改进:

    1)hard samples: hard positive 和hard negative (In Defense of Triplet Loss for person Re-Identification)

    2)  hard negative (cvpr2016,车辆检索)

    3)  minize the distance between those samples with the same id (cvpr 2016, person re-identification by multi-channel parts-based cnn with improved triplet loss function)

    4) multiple negative (nips 2016)

    5) 四元组,cvpr 2017: Beyond triplet loss: a deep quadruplet network for person re-identification

    6) 五元组,cvpr 2016

    7) soft-margin (In Defense of Triplet Loss for person Re-Identification)

    8) Litfed Embedding Loss and the improved version. (In Defense of Triplet Loss for person Re-Identification, Deep Metric Learning via Lifted Structured Feature Embedding)

    9) 认为anchor和positive地位同等,原来的标准triplet把negive推向远离anchor,没有保证也远离positive。因此,考虑向量的运算。Deep Metric Learning with Improved Triplet Loss for Face Clustering in video.

  • 相关阅读:
    Python 规范
    Hql
    Python
    IIS 日志分析
    NHibernate 知识点整理
    微软开放了.NET 4.5.1的源代码
    自定义消息编码绑定实现
    使用自定义绑定
    WCF安全:通过 扩展实现用户名密码认证
    WCF 几种错误
  • 原文地址:https://www.cnblogs.com/Wanggcong/p/7630247.html
Copyright © 2011-2022 走看看