8种排序之间的关系:
1, 直接插入排序
(1)基本思想:在要排序的一组数中,假设前面(n-1)[n>=2] 个数已经是排好顺序的,现在要把第n个数插到前面的有序数中,使得这n个数也是排好顺序的。如此反复循环,直到全部排好顺序。
(2)实例
①直接插入排序
例:六个数12 15 9 20 6 31 24 用直接插入排序,如下图:
思路:
第一步:从给出的六个数中,随便拿出一个数,比如12,形成一个有序的数据序列(一个数当然是有序的数据序列了,不看12之外的数,就当其他的数不存在);
第二步:从剩下的五个数中挑出一个数来,比如15,和刚才的12作比较,12<15,因此,放在12后面,形成数据序列12 15;
第三步:从剩下的四个数中挑出一个数来,比如9,和刚才的有序数据序列12 15作比较,9 < 12 < 15,因此,放在最前面,形成数据序列9 12 15;
第N步,经过这样一个一个的插入并对比,就形成了上图所示的排序结果。在一个元素插入时,首先要和数据序列中最大的元素作比较,如果遇到相同的,则放在相同元素的后面。
特性:
因为要不断的插入,因此直接插入排序一般采用链表结构,属于稳定排序。
(3)用java实现
- package com.njue;
- public class insertSort {
- public insertSort(){
- inta[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
- int temp=0;
- for(int i=1;i<a.length;i++){
- int j=i-1;
- temp=a[i];
- for(;j>=0&&temp<a[j];j--){
- a[j+1]=a[j]; //将大于temp的值整体后移一个单位
- }
- a[j+1]=temp;
- }
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- }
2, 希尔排序(最小增量排序)
(1)基本思想:算法先将要排序的一组数按某个增量d(n/2,n为要排序数的个数)分成若干组,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。当增量减到1时,进行直接插入排序后,排序完成。
(2)实例:
是直接插入排序的改进,例:十个数57 68 59 52 72 28 96 33 24 19用希尔排序,如下图:
思路:
第一步:用排序数字的总数除以2,取奇数得到步长(增量)d1 = 5;
第二步:根据步长d1,将十个数分成五组,如图所示,对这五组各自进行直接插入排序;
第三步:用步长d2继续除以2,取最近的奇数得到步长d2=3;
第四步:根据步长d2,将十个数分成三组,如图所示,对着五组各自进行直接插入排序;
第N步:重复上述分组和排序操作,直到步长变成1,即所有记录放进一个组中排序为止。
特性
由于多次插入排序,我们知道一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,最后其稳定性就会被打乱,所以shell排序是不稳定的。
(3)用java实现
- public class shellSort {
- public shellSort(){
- int a[]={1,54,6,3,78,34,12,45,56,100};
- double d1=a.length;
- int temp=0;
- while(true){
- d1= Math.ceil(d1/2);
- int d=(int) d1;
- for(int x=0;x<d;x++){
- for(int i=x+d;i<a.length;i+=d){
- int j=i-d;
- temp=a[i];
- for(;j>=0&&temp<a[j];j-=d){
- a[j+d]=a[j];
- }
- a[j+d]=temp;
- }
- }
- if(d==1)
- break;
- }
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- }
3. 简单选择排序
(1)基本思想:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。
(2)实例:
例:四个数57 68 59 52选择排序:
思路:
第一步:从四个数找到最小的,和初始状态排在第一位的移动互换;
第二步:从剩下三个数中找到最小的,和初始状态排在第二位的移动互换;
第N步:重复上述查找最小和互换的步骤,直到最后一个为止。
特性
举个例子,序列5 8 5 2 9, 我们知道第一遍选择第1个元素5会和2交换,那么原序列中两个5的相对前后顺序就被破坏了,所以选择排序不是一个稳定的排序算法。
(3)用java实现
- public class selectSort {
- public selectSort(){
- int a[]={1,54,6,3,78,34,12,45};
- int position=0;
- for(int i=0;i<a.length;i++){
- int j=i+1;
- position=i;
- int temp=a[i];
- for(;j<a.length;j++){
- if(a[j]<temp){
- temp=a[j];
- position=j;
- }
- }
- a[position]=a[i];
- a[i]=temp;
- }
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- }
4, 堆排序
(1)基本思想:堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义如下:具有n个元素的序列(h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1)(i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
(2)实例:
如果不清楚堆及特性可移步本人上一篇博客《常用数据结构-几种特殊的二叉树》,关于堆排序,有些复杂,下面举例说明:例:对数列{12,56,23,26,15,86,92,75,65}建立大顶堆(大根堆),则初始堆是?
思路:
分为两个大的过程,第一是建堆过程;
思路:
第一步:根据完全二叉树排列给出的数字,如上图中第一个图;
第二步:因为树是一个单向的过程,叶子结点是无法知道父结点的,因此不能拿叶子结点去和父结点比较;根据结点i,i>=n/2为叶子结点的特性,找出最后一个非叶子结点,然后拿它和它的叶子结点作比较,如果比叶子结点小,则互换(建立的是大顶堆),反之不动。
第三步:紧接着调整n/2 - 1号结点(求出n/2 -1 = 3,也就是23号结点),从图中看出23号结点的两个结点都比它大,那么择优选取一个最大的进行互换。
第N步:按照上述方法,依次互换,最后建立了一个大顶堆。
第二是堆排序过程:
思路:
第一步:首先根据上面建立好的初始堆将根结点92输出,然后用编号最大的结点65替代根结点,断开最大编号结点的指针。
第二步:上一步完成后,检查65结点是否符合大顶堆要求,如果不符合又进行一次建堆的过程(参照第一个过程)。
第N步:按照上述两个步骤,反复操作,就会得到需要的结果。
有可能第n/2个父节点交换把后面一个元素交换过去了,而第n/2-1个父节点把后面一个相同的元素没有交换,那么这2个相同的元素之间的稳定性就被破坏了。所以,堆排序不是稳定的排序算法
初始序列:46,79,56,38,40,84
建堆:
交换,从堆中踢出最大数
依次类推:最后堆中剩余的最后两个结点交换,踢出一个,排序完成。
(3)用java实现
- import java.util.Arrays;
- public class HeapSort {
- int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
- public HeapSort(){
- heapSort(a);
- }
- public void heapSort(int[] a){
- System.out.println("开始排序");
- int arrayLength=a.length;
- //循环建堆
- for(int i=0;i<arrayLength-1;i++){
- //建堆
- buildMaxHeap(a,arrayLength-1-i);
- //交换堆顶和最后一个元素
- swap(a,0,arrayLength-1-i);
- System.out.println(Arrays.toString(a));
- }
- }
- private void swap(int[] data, int i, int j) {
- // TODO Auto-generated method stub
- int tmp=data[i];
- data[i]=data[j];
- data[j]=tmp;
- }
- //对data数组从0到lastIndex建大顶堆
- private void buildMaxHeap(int[] data, int lastIndex) {
- // TODO Auto-generated method stub
- //从lastIndex处节点(最后一个节点)的父节点开始
- for(int i=(lastIndex-1)/2;i>=0;i--){
- //k保存正在判断的节点
- int k=i;
- //如果当前k节点的子节点存在
- while(k*2+1<=lastIndex){
- //k节点的左子节点的索引
- int biggerIndex=2*k+1;
- //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
- if(biggerIndex<lastIndex){
- //若果右子节点的值较大
- if(data[biggerIndex]<data[biggerIndex+1]){
- //biggerIndex总是记录较大子节点的索引
- biggerIndex++;
- }
- }
- //如果k节点的值小于其较大的子节点的值
- if(data[k]<data[biggerIndex]){
- //交换他们
- swap(data,k,biggerIndex);
- //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
- k=biggerIndex;
- }else{
- break;
- }
- }
5.冒泡排序
(1)基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
(2)实例:
比较常见的排序算法。举例说明:
思路:
第一步:将倒数第一个和倒数第二个数进行比较,如果小,则互换;
第二步:将倒数第二个和倒数第三个数进行比较,如果小,则互换;
第N步:筛选出最小的一个数,然后从剩下的数中按照上面的方法反复操作,得到需要的序列。
特性
如果两个相等的元素没有相邻,那么即使通过前面的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是一种稳定排序算法。
(3)用java实现
- public class bubbleSort {
- public bubbleSort(){
- int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
- int temp=0;
- for(int i=0;i<a.length-1;i++){
- for(int j=0;j<a.length-1-i;j++){
- if(a[j]>a[j+1]){
- temp=a[j];
- a[j]=a[j+1];
- a[j+1]=temp;
- }
- }
- }
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- }
6.快速排序
(1)基本思想:选择一个基准元素,通常选择第一个元素或者最后一个元素,通过一趟扫描,将待排序列分成两部分,一部分比基准元素小,一部分大于等于基准元素,此时基准元素在其排好序后的正确位置,然后再用同样的方法递归地排序划分的两部分。
(2)实例:
快速排序(分治思想)是对冒泡排序的一种改进,思想:从数列中挑出一个元素,称为 "基准"(pivot);重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割结束之后,该基准就处于数列的中间位置。这个称为分割(partition)操作;递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
思路:
第一步:从给出的数列中找到一个基准,如图中的57,左指针指向57,右指针指向最后一个元素;
第二步:对左指针与右指针指向的元素作对比,右指针指向的元素19比左指针指向的元素57小(基准),互换位置;
第三步:左指针右移一个后跟右指针对比,68>57,因此互换;
第N步:按照上述的步骤经过指针的不断移动和元素的对比互换,最后得出第一个以57为中心的序列(左侧小于57,右侧大于57);接下来利用递归分别对57前后的进行排序。
特性
上面右侧的动态图很好的说明了快速排序的思路,快速排序是一个不稳定的排序算法。
(3)用java实现
- public class quickSort {
- int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
- public quickSort(){
- quick(a);
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- public int getMiddle(int[] list, int low, int high) {
- int tmp = list[low]; //数组的第一个作为中轴
- while (low < high) {
- while (low < high && list[high] >= tmp) {
- high--;
- }
- list[low] = list[high]; //比中轴小的记录移到低端
- while (low < high && list[low] <= tmp) {
- low++;
- }
- list[high] = list[low]; //比中轴大的记录移到高端
- }
- list[low] = tmp; //中轴记录到尾
- return low; //返回中轴的位置
- }
- public void _quickSort(int[] list, int low, int high) {
- if (low < high) {
- int middle = getMiddle(list, low, high); //将list数组进行一分为二
- _quickSort(list, low, middle - 1); //对低字表进行递归排序
- _quickSort(list, middle + 1, high); //对高字表进行递归排序
- }
- }
- public void quick(int[] a2) {
- if (a2.length > 0) { //查看数组是否为空
- _quickSort(a2, 0, a2.length - 1);
- }
- }
- }
7、归并排序
(1)基本排序:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
(2)实例:
该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
思路:
第一步:把待排序的每一个元素看做一个有序表(则由n个有序表),通过两两合并,生成⌊n/2⌋个长度为2(最后一个表的长度可能小于2)的有序表。
第二步:每组内部进行排序;
第三步:两组两组进行归并,将两个指针分别定为两组最小的两个数,然后进行比较,小的挑出来,指针后移,继续比较。
第N步:进过上述不断的归并和比较,最终得出一个正确的序列。
归并排序是稳定的排序算法
(3)用java实现
- import java.util.Arrays;
- public class mergingSort {
- int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,56,17,18,23,34,15,35,25,53,51};
- public mergingSort(){
- sort(a,0,a.length-1);
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- public void sort(int[] data, int left, int right) {
- // TODO Auto-generated method stub
- if(left<right){
- //找出中间索引
- int center=(left+right)/2;
- //对左边数组进行递归
- sort(data,left,center);
- //对右边数组进行递归
- sort(data,center+1,right);
- //合并
- merge(data,left,center,right);
- }
- }
- public void merge(int[] data, int left, int center, int right) {
- // TODO Auto-generated method stub
- int [] tmpArr=new int[data.length];
- int mid=center+1;
- //third记录中间数组的索引
- int third=left;
- int tmp=left;
- while(left<=center&&mid<=right){
- //从两个数组中取出最小的放入中间数组
- if(data[left]<=data[mid]){
- tmpArr[third++]=data[left++];
- }else{
- tmpArr[third++]=data[mid++];
- }
- }
- //剩余部分依次放入中间数组
- while(mid<=right){
- tmpArr[third++]=data[mid++];
- }
- while(left<=center){
- tmpArr[third++]=data[left++];
- }
- //将中间数组中的内容复制回原数组
- while(tmp<=right){
- data[tmp]=tmpArr[tmp++];
- }
- System.out.println(Arrays.toString(data));
- }
- }
8、基数排序
(1)基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
(2)实例:
基数排序其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。
思路:
第一步:将给出的序列元素的个位进行收集,然后按照如图所示,放到对应的位置(0-9序列),并根据个位排出大小,形成了一个序列。
第二步:收集十位,根据第一步产生的序列放到对应的位置,形成一个新的序列;
第三步:收集百位,根据第二步产生的序列放到对应的位置,形成想要的结果序列。
特性
基数排序基于分别排序,分别收集,所以其是稳定的排序算法
(3)用java实现
- import java.util.ArrayList;
- import java.util.List;
- public class radixSort {
- int a[]={49,38,65,97,76,13,27,49,78,34,12,64,5,4,62,99,98,54,101,56,17,18,23,34,15,35,25,53,51};
- public radixSort(){
- sort(a);
- for(int i=0;i<a.length;i++)
- System.out.println(a[i]);
- }
- public void sort(int[] array){
- //首先确定排序的趟数;
- int max=array[0];
- for(int i=1;i<array.length;i++){
- if(array[i]>max){
- max=array[i];
- }
- }
- int time=0;
- //判断位数;
- while(max>0){
- max/=10;
- time++;
- }
- //建立10个队列;
- List<ArrayList> queue=new ArrayList<ArrayList>();
- for(int i=0;i<10;i++){
- ArrayList<Integer> queue1=new ArrayList<Integer>();
- queue.add(queue1);
- }
- //进行time次分配和收集;
- for(int i=0;i<time;i++){
- //分配数组元素;
- for(int j=0;j<array.length;j++){
- //得到数字的第time+1位数;
- int x=array[j]%(int)Math.pow(10, i+1)/(int)Math.pow(10, i);
- ArrayList<Integer> queue2=queue.get(x);
- queue2.add(array[j]);
- queue.set(x, queue2);
- }
- int count=0;//元素计数器;
- //收集队列元素;
- for(int k=0;k<10;k++){
- while(queue.get(k).size()>0){
- ArrayList<Integer> queue3=queue.get(k);
- array[count]=queue3.get(0);
- queue3.remove(0);
- count++;
- }
- }
- }
- }
- }
转:http://blog.csdn.net/without0815/article/details/7697916
转:http://hi.baidu.com/hi_dinga/item/b8687b966cb63334336eeb80
现在我们分析一下8种排序算法的稳定性。
(请网友结合前面的排序基本思想来理解排序的稳定性(8种排序的基本思想已经在前面说过,这里不再赘述)不然可能有些模糊)
(1)直接插入排序:一般插入排序,比较是从有序序列的最后一个元素开始,如果比它大则直接插入在其后面,否则一直往前比。如果找到一个和插入元素相等的,那么就插入到这个相等元素的后面。插入排序是稳定的。
(2)希尔排序:希尔排序是按照不同步长对元素进行插入排序,一次插入排序是稳定的,不会改变相同元素的相对顺序,但在不同的插入排序过程中,相同的元素可能在各自的插入排序中移动,稳定性就会被破坏,所以希尔排序不稳定。
(3)简单选择排序:在一趟选择,如果当前元素比一个元素小,而该小的元素又出现在一个和当前元素相等的元素后面,那么交换后稳定性就被破坏了。光说可能有点模糊,来看个小实例:858410,第一遍扫描,第1个元素8会和4交换,那么原序列中2个8的相对前后顺序和原序列不一致了,所以选择排序不稳定。
(4)堆排序:堆排序的过程是从第n/2开始和其子节点共3个值选择最大(大顶堆)或者最小(小顶堆),这3个元素之间的选择当然不会破坏稳定性。但当为n/2-1, n/2-2, ...这些父节点选择元素时,有可能第n/2个父节点交换把后面一个元素交换过去了,而第n/2-1个父节点把后面一个相同的元素没有交换,所以堆排序并不稳定。
(5)冒泡排序:由前面的内容可知,冒泡排序是相邻的两个元素比较,交换也发生在这两个元素之间,如果两个元素相等,不用交换。所以冒泡排序稳定。
(6)快速排序:在中枢元素和序列中一个元素交换的时候,很有可能把前面的元素的稳定性打乱。还是看一个小实例:6 4 4 5 4 7 8 9,第一趟排序,中枢元素6和第三个4交换就会把元素4的原序列破坏,所以快速排序不稳定。
(7)归并排序:在分解的子列中,有1个或2个元素时,1个元素不会交换,2个元素如果大小相等也不会交换。在序列合并的过程中,如果两个当前元素相等时,我们把处在前面的序列的元素保存在结果序列的前面,所以,归并排序也是稳定的。
(8)基数排序:是按照低位先排序,然后收集;再按照高位排序,然后再收集;依次类推,直到最高位。有时候有些属性是有优先级顺序的,先按低优先级排序,再按高优先级排序,最后的次序就是高优先级高的在前,高优先级相同的低优先级高的在前。基数排序基于分别排序,分别收集,所以是稳定的。
8种排序的分类,稳定性,时间复杂度和空间复杂度总结: