zoukankan      html  css  js  c++  java
  • (叉积,线段判交)HDU1086 You can Solve a Geometry Problem too

    You can Solve a Geometry Problem too

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 12959    Accepted Submission(s): 6373


    Problem Description
    Many geometry(几何)problems were designed in the ACM/ICPC. And now, I also prepare a geometry problem for this final exam. According to the experience of many ACMers, geometry problems are always much trouble, but this problem is very easy, after all we are now attending an exam, not a contest :)
    Give you N (1<=N<=100) segments(线段), please output the number of all intersections(交点). You should count repeatedly if M (M>2) segments intersect at the same point.

    Note:
    You can assume that two segments would not intersect at more than one point. 
     
    Input
    Input contains multiple test cases. Each test case contains a integer N (1=N<=100) in a line first, and then N lines follow. Each line describes one segment with four float values x1, y1, x2, y2 which are coordinates of the segment’s ending. 
    A test case starting with 0 terminates the input and this test case is not to be processed.
     
    Output
    For each case, print the number of intersections, and one line one case.
     
    Sample Input
    2
    0.00 0.00 1.00 1.00
    0.00 1.00 1.00 0.00
    3
    0.00 0.00 1.00 1.00
    0.00 1.00 1.00 0.000
    0.00 0.00 1.00 0.00
    0
     
    Sample Output
    1
    3

    叉积求线段判交的参考链接:

    https://www.cnblogs.com/Duahanlang/archive/2013/05/11/3073434.html

    https://www.cnblogs.com/tuyang1129/p/9390376.html

    C++代码:

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    using namespace std;
    struct Point{
        double x1,y1,x2,y2;
    }node[110];
    int cross(const Point &a, const Point &b){
        double k1 = (a.x2 - a.x1) * (b.y1 - a.y1) - (a.y2 - a.y1) * (b.x1 - a.x1);
        double k2 = (a.x2 - a.x1) * (b.y2 - a.y1) - (a.y2 - a.y1) * (b.x2 - a.x1);
        if(k1 * k2 <= 0){
            return 1;
        }
        else
            return 0;
    } 
    int main(){
        int n;
        while(scanf("%d",&n),n){
            int ans = 0;
            for(int i = 0; i < n; i++){
                scanf("%lf%lf%lf%lf",&node[i].x1,&node[i].y1,&node[i].x2,&node[i].y2);
            }
            for(int i = 0; i < n-1; i++){
                for(int j = i + 1; j < n; j++){
                    ans += (cross(node[i],node[j])) && (cross(node[j],node[i]));
                }
            }
            printf("%d
    ",ans);
        }
        return 0;
    }
  • 相关阅读:
    凸包Graham Scan算法实现
    人与人之间的差距是从大学开始的
    google笔试题两个n维数组logn求中位数问题 zz
    matlab中使用结构体
    人脸识别理论与应用研究 zz
    如果让我再读一次研究生 zz
    Open Yale CourseFinancial MarketNote1 zz
    哈尔小波变换示例
    全屏模式 硬缩放
    APE结合键盘控制角色运动 转
  • 原文地址:https://www.cnblogs.com/Weixu-Liu/p/10490474.html
Copyright © 2011-2022 走看看