zoukankan      html  css  js  c++  java
  • (线性dp,LCS) POJ 1458 Common Subsequence

    Common Subsequence
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 65333   Accepted: 27331

    Description

    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = < x1, x2, ..., xm > another sequence Z = < z1, z2, ..., zk > is a subsequence of X if there exists a strictly increasing sequence < i1, i2, ..., ik > of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = < a, b, f, c > is a subsequence of X = < a, b, c, f, b, c > with index sequence < 1, 2, 4, 6 >. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y.

    Input

    The program input is from the std input. Each data set in the input contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct.

    Output

    For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.

    Sample Input

    abcfbc         abfcab
    programming    contest 
    abcd           mnp

    Sample Output

    4
    2
    0

    最长公共子序列问题(LCS) 其状态转换式为:A[i] = A[j]时,d(i,j) = d(i-1,j-1) + 1,否则d(i,j) = max{d(i-1,j),d(i,j-1)}
    这个用char数组吧,用string可能出错,。。。打表
    C++代码:
    #include<iostream>
    #include<cstring>
    #include<string>
    #include<cstdio>
    #include<algorithm>
    using namespace std;
    const int maxn = 10000;
    int dp[maxn][maxn];
    char s1[maxn];
    char s2[maxn];
    int len1,len2;
    int main(){
        while(~scanf("%s%s",s1,s2)){
            len1 = strlen(s1);
            len2 = strlen(s2);
            for(int i = 0; i <= len1; i++){
                dp[i][0] = 0;
            }
            for(int j = 0; j <= len2; j++){
                dp[0][j] = 0;
            }
            for(int i = 1; i <= len1; i++){
                for(int j = 1; j <= len2; j++){
                    if(s1[i-1] == s2[j-1])
                        dp[i][j] = dp[i-1][j-1] + 1;
                    else
                        dp[i][j] = max(dp[i][j-1],dp[i-1][j]);
                }
            }
            printf("%d
    ",dp[len1][len2]);
        }
        return 0;
    }
  • 相关阅读:
    基于redis实现的延迟消息队列
    Redis实现求交集操作结果缓存的设计方案
    限流算法之漏桶算法、令牌桶算法
    Apache设置防DDOS模块mod_evasive
    FastCGI技术
    详解强大的SQL注入工具——SQLMAP
    nginx根据域名做http,https分发
    Nginx配置SSL证书部署HTTPS网站
    JProfiler学习笔记
    Mysql压测工具mysqlslap 讲解
  • 原文地址:https://www.cnblogs.com/Weixu-Liu/p/10512418.html
Copyright © 2011-2022 走看看