zoukankan      html  css  js  c++  java
  • (欧拉图 并查集 图论) nyoj 42-一笔画问题

    题目描述:

    zyc从小就比较喜欢玩一些小游戏,其中就包括画一笔画,他想请你帮他写一个程序,判断一个图是否能够用一笔画下来。

    规定,所有的边都只能画一次,不能重复画。

    输入描述:

    第一行只有一个正整数N(N<=10)表示测试数据的组数。
    每组测试数据的第一行有两个正整数P,Q(P<=1000,Q<=2000),分别表示这个画中有多少个顶点和多少条连线。(点的编号从1到P)
    随后的Q行,每行有两个正整数A,B(0<A,B<P),表示编号为A和B的两点之间有连线。

    输出描述:

    如果存在符合条件的连线,则输出"Yes",
    如果不存在符合条件的连线,输出"No"。

    样例输入:

    2
    4 3
    1 2
    1 3
    1 4
    4 5
    1 2
    2 3
    1 3
    1 4
    3 4

    样例输出:

    No
    Yes


    这是一个欧拉图的应用,思路如下:

    1)首先判断是否都在一个集合中,因为这样才能一笔画,如果是在两个不同的集合中(即被分成两个图,而这两个图不连通),那就最少两笔画,不符合要求。

    2)在一个前提下,判断奇点数是否为0或2(一个点的入度和出度的和为0或2),这样才能一笔画。

    C++代码:

    #include<iostream>
    #include<algorithm>
    #include<cstdio>
    #include<cstring>
    using namespace std;
    const int maxn = 1002;
    int father[maxn],node[maxn];
    int Find(int x){
        while(x != father[x]){
            father[x] = father[father[x]];
            x = father[x];
        }
        return x;
    }
    void Union(int a,int b){
        int ax = Find(a);
        int bx = Find(b);
        if(ax != bx){
            father[ax] = bx;
        }
    }
    int main(){
        int N;
        scanf("%d",&N);
        int p,q;
        int a,b;
        while(N--){
            scanf("%d%d",&p,&q);
            for(int i = 1; i <= p; i++){
                father[i] = i;
            }
            memset(node,0,sizeof(node));
            for(int i = 0; i < q; i++){
                scanf("%d%d",&a,&b);
                Union(a,b);
                node[a]++;
                node[b]++;
            }     
            int cnt = 0,cnt1 = 0;
            bool flag1 = false,flag2 = false;
            for(int i = 1; i <= p; i++){
                if(father[i] == i){
                    cnt++;
                    if(cnt == 2){
                        flag1 = true;
                    }
                }
                if(node[i] % 2) cnt1++;
            }
            if(cnt1 != 0 && cnt1 != 2) flag2 = true;
            if(!flag1 && !flag2) printf("Yes
    ");
            else printf("No
    ");
        }
        return 0;
    }

    参考链接:https://www.cnblogs.com/GetcharZp/p/9091778.html

  • 相关阅读:
    SnagIt 9-12 注册码
    【工具推荐】LICEcap –GIF 屏幕录制工具
    linux笔记一(基础命令)
    C#性能优化:延迟初始化Lazy<T>
    CSS3实现漂亮ToolTips
    mysql数据库sql优化
    精简代码,为网站减负的十大建议
    10个简单步骤,完全理解SQL
    13个mysql数据库的实用SQL小技巧
    MyBatis源码解读(二)
  • 原文地址:https://www.cnblogs.com/Weixu-Liu/p/10890082.html
Copyright © 2011-2022 走看看