zoukankan      html  css  js  c++  java
  • (母函数 Catalan数 大数乘法 大数除法) Train Problem II hdu1023

    Train Problem II

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

    Total Submission(s): 10372    Accepted Submission(s): 5543

    Problem Description

    As we all know the Train Problem I, the boss of the Ignatius Train Station want to know if all the trains come in strict-increasing order, how many orders that all the trains can get out of the railway.

    Input

    The input contains several test cases. Each test cases consists of a number N(1<=N<=100). The input is terminated by the end of file.

    Output

    For each test case, you should output how many ways that all the trains can get out of the railway.

    Sample Input

    1

    2

    3

    10

    Sample Output

    1

    2

    5

    16796

    Hint

    The result will be very large, so you may not process it by 32-bit integers.

    注意:

    这是卡特兰数,用大数。使用的公式为:

    h(n)=h(n-1)*(4*n-2)/(n+1)。

    用JAVA更简单:

    import java.math.BigInteger;
    import java.util.Scanner;
    public class Main {
        public static void main(String[] args) {
            Scanner in = new Scanner (System.in);
            BigInteger a[]=new BigInteger[101];
            a[0]=BigInteger.ZERO;
            a[1]=BigInteger.ONE;
            for(int i=2;i<=100;i++)
                a[i]=a[i-1].multiply(BigInteger.valueOf(4*i-2)).divide(BigInteger.valueOf(i+1));
            while(in.hasNextInt()) {
                int n=in.nextInt();
                System.out.println(a[n]);
            }
        }
    }
    View Code

    接下来是C++:

    #include <iostream>
    #include <cstdio>
    using namespace std;
    int a[105][105];
    int i,j,n;
    void ctl()         //打表。
    {
        a[2][0]=1;
        a[2][1]=2;
        a[1][0]=1;
        a[1][1]=1;
        int len=1,t,yu=0;       //注意初始化。
        for(i=3;i<101;i++)         //先打表求出1到100的所有Catalan数。
        {
            for(j=1;j<=len;j++)              //大数乘法。
            {
                t=a[i-1][j]*(4*i-2)+yu;
                yu=t/10;
                a[i][j]=t%10;       //求每位数的确定的数。
            }
            while(yu)         //进位。一直到yu为0为止。
            {
                a[i][++len]=yu%10;
                yu/=10;
            }
            for(j=len;j>=1;j--)              //大数除法。联系手工除法步骤。
            {
                t=a[i][j]+yu*10;
                a[i][j]=t/(i+1);           //可以看做手工除法的商。
                yu=t%(i+1);              //可以看做手工除法的余数。
            }
            while(!a[i][len])        //去掉前边的0。
            {
                len--;
            }
            a[i][0]=len;
        }
    }
    int main()
    {
        ctl();
        int n;
        while(~scanf("%d",&n))
        {
            for(int i=a[n][0];i>0;i--)
            {
                printf("%d",a[n][i]);
            }   
            puts("");
        }   
        return 0;
    } 
    View Code
  • 相关阅读:
    关于各种好玩的神奇函数
    模板——AC自动机
    模板——造数据
    VIM常用操作
    springboot注解
    面试题
    Linux常用命令
    Zookeeper
    对cpu与load的理解及线上问题处理思路
    top
  • 原文地址:https://www.cnblogs.com/Weixu-Liu/p/9164725.html
Copyright © 2011-2022 走看看