zoukankan      html  css  js  c++  java
  • 数学图形之螺旋曲面

    这一节中将提供各种螺旋曲面的生成方法.

    相关软件参见:数学图形可视化工具,使用自己定义语法的脚本代码生成数学图形.

    我之前写过生成圆环的C++程序,代码发布在螺旋面(Spire)图形的生成算法

    (1)正螺旋面

          正螺旋面就是让一条直线l的初始位置与x轴重合,然后让直线l一边绕z轴作匀速转动,一边沿z轴方向作匀速运动,则直线在这两种运动的合成下扫出的曲面就是正螺旋面。

          显然正螺旋面可以看做是由直线形成的,即它是一个直纹面。

    为什么叫正,难道还有反吗?.看其公式,就是将圆向上拉了拉又多转了几圈.

    vertices = D1:32 D2:360
    
    u = from 0 to 3 D1
    v = from 0 to (8*PI) D2
    
    x = u*cos(v)
    y = v*0.5
    z = u*sin(v)

    (2)正螺旋面随机(helicoiddroit)

    加上随机参数的正螺旋面,并向外拉伸了下.

    vertices = D1:32 D2:360
    
    u = from 0 to 3 D1
    v = from 0 to (8*PI) D2
    
    a = rand2(0.1, 1)
    b = rand2(1, 5)
    
    x = (b + u)*cos(v)
    y = v*a
    z = (b + u)*sin(v)

    (3)阿基米德螺旋面

    看其公式,阿基米德螺旋面就是正螺旋面变化了下高度参数

    #http://202.113.29.3/nankaisource/graphics/differential%20geometry/t060307.htm
    #http://www.bb.ustc.edu.cn/jpkc/xiaoji/wjf/kj/
    
    vertices = D1:100 D2:360
    
    u = from 0 to (2) D1
    v = from 0 to (8*PI) D2
    
    x = -u/SQRT2*cos(v)
    y = u/SQRT2 + v/PI/2
    z = -u/SQRT2*sin(v)

    (4)sincos螺旋面

    vertices = D1:720 D2:72
    p = from 0 to (8*PI) D1
    q = from 0 to (PI) D2
    
    a = 5
    h = rand2(0.5, 5)
    
    x = a/2*(cos(p) + cos(q))
    y = h*(p + q)/2
    z = a/2*(sin(p) + sin(q))
    
    u = p
    v = q*3

    (5)渐开螺旋面

    #http://202.113.29.3/nankaisource/graphics/differential%20geometry/t060306.htm
    #http://www.bb.ustc.edu.cn/jpkc/xiaoji/wjf/kj/
    
    vertices = D1:100 D2:360
    
    u = from 0 to (4*PI) D1
    v = from 0 to (8*PI) D2
    
    x = 2*[cos(u+v) + u*sin(u+v)]
    y = v
    z = 2*[sin(u+v) - u*cos(u+v)]

    (6)双曲正弦螺旋面

    vertices = D1:360 D2:72
    u = from 0 to (5*PI) D1
    v = from 0 to (4*PI) D2
    
    a = 5
    h = rand2(5, 20)
    
    x = a*sh(u - v)*cos(u+v)
    y = h*(u + v)
    z = a*sh(u - v)*sin(u+v)
    
    w = 50
    x = limit(x, -w, w)
    z = limit(z, -w, w)

    由于sh函数会出现无穷大的情况,所以做了个范围限制,不过这边界太四方了有点难看,修改下:

    vertices = D1:360 D2:72
    u = from 0 to (5*PI) D1
    v = from 0 to (4*PI) D2
    
    a = 5
    h = rand2(5, 20)
    
    x = a*sh(u - v)*cos(u+v)
    y = h*(u + v)
    z = a*sh(u - v)*sin(u+v)
    
    w = sqrt(x*x + z*z)
    
    x = if(w > 50, x*50/w, x)
    z = if(w > 50, z*50/w, z)

    (7)Developable helicoid

    #http://www.mathcurve.com/surfaces/helicoiddeveloppable/helicoiddeveloppable.shtml
    
    vertices = dimension1:1000 dimension2:72
    
    u = from 0 to (18*PI) dimension1
    v = from 0 to (2*PI) dimension2
    
    a = rand2(1, 10)
    b = rand2(1, 10)
    
    x = a*(cos(u) - v*sin(u))
    z = a*(sin(u) + v*cos(u))
    y = b*(u + v)

    (8)Helicoid_wiki

    从维基上找的一种螺旋面:

    #http://en.wikipedia.org/wiki/Catenoid
    
    vertices = D1:400 D2:100
    
    u = from (0) to (PI*16) D1
    v = from (0) to (4) D2
    
    t = rand2(-PI, PI)
    s = sin(t)
    c = cos(t)
    
    x = c*sinh(v)*sin(u) + s*cosh(v)*cos(u)
    z = u*c + v*s
    y = -c*sinh(v)*cos(u) + s*cosh(v)*sin(u)

    (9)helicoidcercle

    #http://www.mathcurve.com/surfaces/helicoidcercle/helicoidcercle.shtml
    
    vertices = D1:72 D2:1200
    
    u = from 0 to (PI) D1
    v = from 0 to (36*PI) D2
    
    a = 1
    h = 1/(2*PI)
    
    x = a*cos(u)*cos(v)
    z = a*cos(u)*sin(v)
    y = b*sin(u) + h*v

    再回到第一个脚本,正螺旋面中它的生成方式是:

    "然后让直线l一边绕z轴作匀速转动,一边沿z轴方向作匀速运动"

    如果用一条曲线一边绕z轴作匀速转动,一边沿z轴方向作匀速运动,那会生成何种曲面呢?

    这样的话,每一种曲线都可以生成一种螺旋面.

    这里再提供两个例子:

     (10)幂螺旋面

    vertices = D1:32 D2:360
    
    u = from 0 to 2 D1
    v = from 0 to (8*PI) D2
    
    a = rand2(-2, 2)
    w = pow(u, a)
    
    x = u*cos(v)
    y = v*0.5 + w
    z = u*sin(v)

    (11)指螺旋面

    vertices = D1:32 D2:360
    
    u = from 0 to 2 D1
    v = from 0 to (8*PI) D2
    
    a = rand2(0, 2)
    w = pow(a, u)
    
    x = u*cos(v)
    y = v*0.5 + w
    z = u*sin(v)

  • 相关阅读:
    Aspect Oriented Programming
    jsp01
    监听器
    Java编写验证码
    servlet07
    MySQL02
    MySQL01
    Java的jdk1.6与jre1.8中存在的差异
    登陆验证和二级联动
    ajax和json
  • 原文地址:https://www.cnblogs.com/WhyEngine/p/3880551.html
Copyright © 2011-2022 走看看