zoukankan      html  css  js  c++  java
  • 数学图形之水滴

          前几天看科幻小说<三体>,讲到有种武器叫水滴,是三体人用于对付地球人的.这一节将介绍几种水滴形的数学公式.

          <三体>书中对水滴的描述如下:

          当全世界第一次看到探测器的影像时,所有人都陶醉于它那绝美的外形。这东西真的是太美了,它的形状虽然简洁,但造型精妙绝伦,曲面上的每一个点都恰到好处,使这滴水银充满着飘逸的动感,仿佛每时每刻都在宇宙之夜中没有尽头地滴落着。它给人一种感觉:即使人类艺术家把一个封闭曲面的所有可能形态平滑地全部试完,也找不出这样一个造型。它在所有的可能之外,即使柏拉图的理想国中也没有这样完美的形状,它是比直线更直的线,是比正圆更圆的圆,是梦之海中跃出的一只镜面海豚,是宇宙间所有爱的结晶...美总是和善联在一起的,所以,如果宇宙中真有一条善恶分界线的话,它一定在善这一面。

    使用自己定义语法的脚本代码生成数学图形.相关软件参见:数学图形可视化工具,该软件免费开源.QQ交流群: 367752815

    我之前写过有关水滴线的文章,数学图形(1.15) 水滴线,那是讲的二维曲线,而这一节给大家带来的是三维水滴形.当然水滴形就是由一个水滴线旋转180度,或半个水滴线旋转360度而生成的.

    (1)水滴 

    vertices = D1:100 D2:100
    
    u = from 0 to (PI) D1
    v = from 0 to (2*PI) D2
    
    a = 10
    b = rand2(0.25, 1)
    
    m = a/2*(1 + cos(u))
    n = a*a/64*(sin(2*u) + 2*sin(u))*b
    
    x = n*cos(v)
    z = n*sin(v)
    y = array_max(m)-m

    (2)Ding-Dong

    #http://mathworld.wolfram.com/Ding-DongSurface.html
    # x^2+y^2=(1-z)z^2 
    
    vertices = 360
    
    v = from -1 to 1 D2
    
    x = v*sqrt(0.5 - v/2)
    y = v
    
    a = 10
    
    x = x*a
    y = y*a
    #http://mathworld.wolfram.com/Ding-DongSurface.html
    # x^2+y^2=(1-z)z^2 
    
    vertices = D1:100 D2:100
    
    u = from 0 to (PI*2) D1
    v = from -1 to 1 D2
    
    x = v*sqrt(0.5 - v/2)*cos(u)
    y = v
    z = v*sqrt(0.5 - v/2)*sin(u)
    
    a = 10
    
    x = x*a
    y = y*a
    z = z*a

    (3)kiss

    #http://mathworld.wolfram.com/KissSurface.html
    # x^2+y^2=(1-z)z^4 
    
    vertices = 360
    
    v = from -1 to 1
    
    x = v*v*sqrt(0.5 - v/2)
    y = v
    
    a = 10
    
    x = x*a
    y = y*a
    #http://mathworld.wolfram.com/KissSurface.html
    # x^2+y^2=(1-z)z^4 
    
    vertices = D1:100 D2:100
    
    u = from 0 to (PI*2) D1
    v = from -1 to 1 D2
    
    x = v*v*sqrt(0.5 - v/2)*cos(u)
    y = v
    z = v*v*sqrt(0.5 - v/2)*sin(u)
    
    a = 10
    
    x = x*a
    y = y*a
    z = z*a

    (4)Larme

    #http://www.mathcurve.com/courbes2d/larme/larme.shtml
    
    vertices = D1:100 D2:100
    
    u = from 0 to (PI) D1
    v = from 0 to (2*PI) D2
    
    n = rand2(1, 10)
    
    m = 10*cos(u)
    n = 10*sin(u)*pow(sin(u/2), n)
    
    x = n*cos(v)
    z = n*sin(v)
    y = m

    (5)Pear

    #http://www.2dcurves.com/quartic/quarticp.html#pearshapedcurve
    
    vertices = D1:100 D2:100
    
    u = from 0 to (2*PI) D1
    v = from 0 to (PI) D2
    
    m = -1 - sin(u)
    n = 0.5*(1 + sin(u))*cos(u)
    
    x = n*cos(v)
    z = n*sin(v)
    y = array_max(m)-m

    (6)Teardrop

    #http://mathworld.wolfram.com/TeardropCurve.html
    
    vertices = D1:100 D2:100
    
    u = from 0 to (PI) D1
    v = from 0 to (2*PI) D2
    
    m = rand2(0, 10)
    
    n = 10*sin(u)*pow(sin(u/2), m)
    y = 10*cos(u)
    
    x = n*cos(v)
    z = n*sin(v)

  • 相关阅读:
    shell28获取命令结果的第几个参数
    在 Amazon EC2 Linux 实例上手动安装 SSM 代理 Raspbian
    Trying out the Intel Neural Compute Stick 2 – Movidius NCS2
    Flask
    virtualenv/venv 和 pip
    轻量化卷积神经网络:SqueezeNet、MobileNet、ShuffleNet、Xception
    向 AWS Elastic Beanstalk 部署 Flask 应用程序
    Installing the AWS Toolkit for Visual Studio Code
    Installing the AWS SAM CLI on macOS
    树莓派显示器电源管理禁止屏幕休眠
  • 原文地址:https://www.cnblogs.com/WhyEngine/p/3976661.html
Copyright © 2011-2022 走看看