zoukankan      html  css  js  c++  java
  • 混沌分形之逻辑斯蒂(Logistic)映射系统

          前几天,有个同事看到我生成的一幅逻辑斯蒂分岔图像后,问我:“这是咪咪吗?”我回答:“淫者见淫。”好吧,这里将生成几种分岔映射图形,包括逻辑斯蒂映射系统,正弦映射系统和曼德勃罗映射系统。实际上这几种图形算不上分形,只不过它与我写的其他分形对象使用相同的基类,所以也将其列入混沌分形的范畴。

          关于基类FractalEquation的定义及相关软件见:混沌与分形

    (1)逻辑斯蒂映射系统

    // 逻辑斯蒂映射系统
    class LogisticMap : public FractalEquation
    {
    public:
        LogisticMap()
        {
            m_StartX = 0.0f;
            m_StartY = 0.0f;
            m_StartZ = 0.0f;
    
            m_ParamA = 0.0f;
            m_ParamB = 4.0f;
    
            m_nIterateCount = 100;
        }
    
        void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
        {
            float R = (float)rand()/RAND_MAX;
            float k = m_ParamA + (m_ParamB - m_ParamA) * R;
            outX = R*4.0f;
    
            outY = (float)rand()/RAND_MAX;
            for (int i = 0; i < m_nIterateCount; i++)
            {
                outY = k*outY*(1-outY);
            }
            outY *= 2;
    
            outZ = z;
        }
    
        bool IsValidParamA() const {return true;}
        bool IsValidParamB() const {return true;}
    
    private:
        int m_nIterateCount;
    };

    调节下参数后的图形:

    (2)正弦映射系统

    // 正弦映射系统
    class SinMap : public FractalEquation
    {
    public:
        SinMap()
        {
            m_StartX = 0.0f;
            m_StartY = 0.0f;
            m_StartZ = 0.0f;
    
            m_ParamA = -2*PI;
            m_ParamB = 2*PI;
    
            m_nIterateCount = 64;
        }
    
        void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
        {
            float R = (float)rand()/RAND_MAX;
            float k = m_ParamA + (m_ParamB - m_ParamA) * R;
            outX = R*4.0f;
    
            outY = (float)rand()/RAND_MAX;
            for (int i = 0; i < m_nIterateCount; i++)
            {
                outY = k*sinf(outY);
            }
    
            outY *= 0.5f;
    
            outZ = z;
        }
    
        bool IsValidParamA() const {return true;}
        bool IsValidParamB() const {return true;}
    
    private:
        int m_nIterateCount;
    };

    (3)曼德勃罗映射系统

    // 曼德勃罗映射系统
    class MandelbrotMap : public FractalEquation
    {
    public:
        MandelbrotMap()
        {
            m_StartX = 0.0f;
            m_StartY = 0.0f;
            m_StartZ = 0.0f;
    
            m_ParamA = -2.0f;
            m_ParamB = 0.0f;
    
            m_nIterateCount = 64;
        }
    
        void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const
        {
            float R = (float)rand()/RAND_MAX;
            float k = m_ParamA + (m_ParamB - m_ParamA) * R;
            outX = R*4.0f;
    
            outY = (float)rand()/RAND_MAX;
            for (int i = 0; i < m_nIterateCount; i++)
            {
                outY = outY*outY + k;
            }
    
            outZ = z;
        }
    
        bool IsValidParamA() const {return true;}
        bool IsValidParamB() const {return true;}
    
    private:
        int m_nIterateCount;
    };

    最后发下被我同事当成MM的逻辑斯蒂分岔图像:

     之前我还写过一篇关于逻辑斯蒂的文章:混沌数学之logistic模型

  • 相关阅读:
    硬件基础---拆装机
    Dynamics CRM 2015 Update 1 系列(4): 自己定义主键
    Heroku第三方服务接入指南(二)
    ssh 免密登录
    CentOS 7 NAT软路由
    Nginx升级
    挖矿病毒
    安装 epel-release
    hydra 安装和使用
    Linux 安全信息查看
  • 原文地址:https://www.cnblogs.com/WhyEngine/p/4069203.html
Copyright © 2011-2022 走看看