zoukankan      html  css  js  c++  java
  • 在 DP 的结果上再来一层 DP: 粉刷匠

    粉刷匠

    题意

    这道题要求将 (n) 块长 (m) 的木板染色, 每次将一块木板的一个连续区域染成蓝色或红色, 最多染 (t) 次, 给出每个位置的目标颜色, 求染色后最多有多少位置符合目标颜色.

    (n, m leq 50, t leq 2500)

    分析

    首先看到这道题每块木板之间没有联系, 只是共用 (t) 的染色次数, 所以一定是将每块木板处理出的信息进行 DP.

    既然木板之间唯一的联系是共用总染色次数, 那么就关于染色次数 DP, 假设我们求出了每个木板 (i)(k) 次的符合要求的最多位置数 (g_{i, k}), 设计状态 (f_{i, j}) 表示前 (i) 块板染 (j) 次符合要求的最多位置数. 转移很简单, 只要枚举当前木板染几次即可. 边界条件是第一块木板, (f_{1, j} = g_{1, j})

    [f_{i, j} = max(f_{i - 1, j - k} + g_{i, k}) ]

    容易发现, (i)(n) 同阶, (j)(nm) 同阶, (k)(m) 同阶, 状态 (O(n^2m)), 转移 (O(m)), 总复杂度 (O(n^2m^2)).

    (g_{i, j})

    先思考一个上界, 使得无论目标如何, 都可以在这个上界之内的次数染成目标状态.

    极限数据是红蓝一格一格交替, 这时可以从左到右每次染一格, 需要 (m) 次.

    发现这个东西也可以 DP, 如果某种决策中这个位置和上一个位置颜色相同, 就不会增加次数, 如果不同, 就会增加一个次数, 这时, 就可以设计状态 (dp_{i, j, 0/1}) 表示当前木板前 (i) 个位置染色 (j) 次, 第 (i) 个位置是蓝或红的情况的最多合法位置数量, 写出方程.

    [dp_{i, j, k} = max(dp_{i - 1, j, k}, dp_{i - 1, j - 1, k land 1}) + if(第 i 个位置目标是 k) ]

    (i), (j)(m) 同阶, (k)(O(1)), 状态 (O(m^2)), 转移 (O(1)), 复杂度 (O(m^2)), 对于所有 (n) 块木板的总复杂度 (O(nm^2)), 加上 (f) DP 的 (O(n^2m^2)) 一共 (O(n^2m^2)).

    于是 (g_{i, j} = max(dp_{m, j, 0}, dp_{m, j, 1})).

    实现

    发现可以滚动数组, 将 (f)(g) 滚到 (1) 维.

    没有玄学优化的 DP 还是很好写的.

    unsigned m, n, t, Ans(0), f[2505], dp[55][55][2];
    char Inch, a[55];
    int main() {
      srand(time(0));
      n = RD(), m = RD(), t = RD();
      for (register unsigned i(1); i <= n; ++i) {
        while ((Inch ^ '0') && (Inch ^ '1')) Inch = getchar();
        for (register unsigned j(1); j <= m; ++j) {
          a[j] = Inch - '0', Inch = getchar();
        }
        for (register unsigned j(1); j <= m; ++j) {
          for (register unsigned k(1); k <= m; ++k) {
            dp[j][k][a[j]] = max(dp[j - 1][k][a[j]], dp[j - 1][k - 1][a[j] ^ 1]) + 1;
            dp[j][k][a[j] ^ 1] = max(dp[j - 1][k][a[j] ^ 1], dp[j - 1][k - 1][a[j]]);
          }
        }
        for (register unsigned j(min(t, m * i)); j < 0x3f3f3f3f; --j) {
          for (register unsigned k(1); k <= min(m, j); ++k) {
            f[j] = max(f[j], f[j - k] + max(dp[m][k][0], dp[m][k][1]));
          }
        }
      }
      if(t >= n * m) Ans = n * m;
      else Ans = f[t];
      printf("%u
    ", Ans);
      return Wild_Donkey;
    }
    

    另外, 这貌似是 luogu 上本题最优解, 好久没有最优解了, 开心.

  • 相关阅读:
    tensorflow2.0——动量,动态学习率,Dropout
    tensorflow2.0——过拟合优化regularization(简化参数结构,添加参数代价变量)
    tensorflow2.0——自定义全连接层实现并保存
    关于生成器的问题
    端午节大礼包(投票系统)
    写一个函数完成三次登陆功能,再写一个函数完成注册功能
    例题练习
    文件操作
    解决列表中增加字典覆盖之前相同key的字典
    字符串操作,列表,元组,字典操作
  • 原文地址:https://www.cnblogs.com/Wild-Donkey/p/14963119.html
Copyright © 2011-2022 走看看