zoukankan      html  css  js  c++  java
  • POJ 1755 Triathlon (半平面交应用 + 思维 + 直线用两点的向量表示)

    题目:传送门

    题意:铁人三项比赛,给你 n 个参赛者在每一项比赛的速度 a[ i ] ,b[ i ], c[ i ],输出 n 行,第 i 行代表是否能通过改变三项比赛的路程,使得第 i 位参赛者是第一个到达终点的(唯一一个到达终点的)。

    1 <= n <= 100, 1 <= ai, bi, ci <= 10000

    思路:

    这题是半平面交的应用,一开始怎么也没想到可以转化为求解不等式方程组的问题,这题还是挺巧妙的。

    我是看这篇博客学习的 ->

    #include <iostream>
    #include <stdio.h>
    #include <string.h>
    #include <algorithm>
    #include <queue>
    #include <map>
    #include <vector>
    #include <set>
    #include <string>
    #include <math.h>
    
    #define LL long long
    #define mem(i, j) memset(i, j, sizeof(i))
    #define rep(i, j, k) for(int i = j; i <= k; i++)
    #define dep(i, j, k) for(int i = k; i >= j; i--)
    #define pb push_back
    #define make make_pair
    #define INF INT_MAX
    #define inf LLONG_MAX
    #define PI acos(-1)
    #define fir first
    #define sec second
    using namespace std;
    
    const int N = 150;
    const double eps = 1e-10;
    const double maxL = 1e10;
    
    struct Point {
        double x, y;
        Point(double x = 0, double y = 0) : x(x), y(y) { }
    };
    
    int dcmp(double x) {
        if(fabs(x) < eps) return 0; else return x < 0 ? -1 : 1;
    }
    
    Point operator + (Point A, Point B) { return Point(A.x + B.x, A.y + B.y); }
    Point operator - (Point A, Point B) { return Point(A.x - B.x, A.y - B.y); }
    Point operator * (Point A, double p) { return Point(A.x * p, A.y * p); }
    Point operator / (Point A, double p) { return Point(A.x / p, A.y / p); }
    
    double Cross(Point A, Point B) { return A.x * B.y - A.y * B.x; }
    double Dot(Point A, Point B) { return A.x * B.x + A.y * B.y; }
    double Length(Point A) { return sqrt(Dot(A, A)); }
    /* 有向直线,它的左边就是对应的半平面 */
    struct Line {
        Point p; /// 直线任意一点
        Point v; /// 方向向量
        double ang; /// 极角,即从x正半轴旋转到向量v所需要的角(弧度)
        Line() { }
        Line(Point p, Point v) : p(p), v(v) { ang = atan2(v.y, v.x); }
        bool operator < (const Line& L) const {
            return ang < L.ang;
        }
    };
    
    /* 点p在有向直线L的左边 */
    bool OnLeft(Line L, Point p) {
        return dcmp(Cross(L.v, p - L.p)) > 0; 
    }
    
    /* 二直线交点,假设交点唯一存在。*/
    Point GLI(Line a, Line b) {
        Point u = a.p - b.p;
        double t = Cross(b.v, u) / Cross(a.v, b.v);
        return a.p + a.v * t;
    }
    
    int HPI(Line* L, int n, Point* Q) {
        sort(L, L + n); /// 极角排序
    
        int st, ed; /// 双端队列的第一个元素和最后一个元素的下标
    
        Point *p = new Point[n]; /// p[i]为q[i]和q[i+1]的交点
        Line *q = new Line[n]; /// 双端队列
        q[st = ed = 0] = L[0];
    
        rep(i, 1, n - 1) {
            while(st < ed && !OnLeft(L[i], p[ed - 1])) ed--;
            while(st < ed && !OnLeft(L[i], p[st])) st++;
    
            q[++ed] = L[i];
    
            /// 平行取内测那条
            if(fabs(Cross(q[ed].v, q[ed - 1].v)) < eps) {
                ed--;
                if(OnLeft(q[ed], L[i].p)) q[ed] = L[i];
            }
    
            if(st < ed) p[ed - 1] = GLI(q[ed - 1], q[ed]);
    
        }
    
        while(st < ed && !OnLeft(q[st], p[ed - 1])) ed--;
    
        if(ed - st <= 1) return 0;
    
        p[ed] = GLI(q[ed], q[st]);
    
        int m = 0;
        rep(i, st, ed) Q[m++] = p[i];
        return m;
    }
    
    Point P[N], Q[N],tmpa, tmpb;
    
    Line L[N];
    
    int n;
    double a[N], b[N], c[N], A, B, C;
    
    bool judge(int x) {
    
        int cnt = 4;
        
         ///给半平面加一个框,这样可以使解x,y都大于0,也可以避免所有半平面交起来后为不为凸多边形,而是一个敞开的区域
        ///如果题目输入的不是一个多边形,而是本题这种输入若干不等式组的情况,这样的限定就是必须的,不然有bug,例如,两条线是平行的(但是极角不同),
        ///极角排序后又挨在一起, 那么就可能求它们的交点,就容易出错
        tmpa.x = 0; tmpa.y = 0; tmpb.x = maxL; tmpb.y = 0;
        L[0] = Line(tmpa, tmpb - tmpa);
        tmpa = tmpb; tmpb.x = maxL; tmpb.y = maxL;
        L[1] = Line(tmpa, tmpb - tmpa);
        tmpa = tmpb; tmpb.x = 0;
        L[2] = Line(tmpa, tmpb - tmpa);
        tmpa = tmpb; tmpb.y = 0;
        L[3] = Line(tmpa, tmpb - tmpa);
        
        rep(i, 1, n) {
            if(i == x) continue;
            A = 1.0 / a[i] - 1.0 / a[x];
            B = 1.0 / b[i] - 1.0 / b[x];
            C = 1.0 / c[i] - 1.0 / c[x];
    
            int d1 = dcmp(A), d2 = dcmp(B), d3 = dcmp(C);
            
            /* 下面是根据a*x+b*y+c>0取向量p1p2,
               其中p1(x1,y1),p2(x2,y2)
               就是将直线转化为以两点的表示,取向量p1p2左半为半平面
            */
            if(!d1) {
                if(!d2) {
                    if(d3 <= 0) return false;
                    continue;
                }
                tmpa.x = 0;
                tmpb.x = d2;
                tmpa.y = tmpb.y = -C / B;
            }
            else {
                if(!d2) {
                    tmpa.x = tmpb.x = -C / A;
                    tmpa.y = 0; tmpb.y = -d1;
                }
                else {
                    tmpa.x = 0; tmpa.y = -C / B;
                    tmpb.x = d2;
                    tmpb.y = -(C + A * tmpb.x) / B;
                }
            }
    
            L[cnt++] = Line(tmpa, tmpb - tmpa);
    
        }
    
        if(HPI(L, cnt, Q) == 0) return false;
        else return true;
    
    }
    
    void solve() {
        
        scanf("%d", &n);
        rep(i, 1, n) scanf("%lf %lf %lf", &a[i], &b[i], &c[i]);
    
        rep(i, 1, n) {
            if(judge(i)) puts("Yes");
            else puts("No");
        }
    }
    
    int main() {
    
    //    int _; scanf("%d", &_);
    //    while(_--) solve();
    
        solve();
    
        return 0;
    }
    一步一步,永不停息
  • 相关阅读:
    Android的AndroidManifest.xml文件的详解
    Android新建项目手动添加Layout布局
    elasticsearch-搜索-评分(四)
    linux监控命令-磁盘监控
    linux监控命令-pidstat
    linux监控命令-free
    linux监控命令-vmstat
    redis-缓存设计-队列(普通队列、优先级队列、延迟队列)
    redis-缓存设计-信号量设计
    redis-缓存设计-搜索前缀匹配
  • 原文地址:https://www.cnblogs.com/Willems/p/12464749.html
Copyright © 2011-2022 走看看