zoukankan      html  css  js  c++  java
  • noip模拟测试52

    这套题总体来说比较简单,但是有一些分数我没有拿到,先说T1,我10分钟左右打完了60分的暴力,然后就开始打表找规律,好像只有我去找了循环节,找规律找了一个多小时,到八点四十的时候我还没有正解做法,就直接弃掉了,浪费了好多时间.....然后是T2,看到n==1的点果断输出1,拿了20分走人,然后是T3,我觉得跟之前考过的一道题比较像,但是那道题我没有改过,不过应该是可以用类似的思想,点分治,但是我觉得复杂度有问题,于是看到了\(k==1\)的特殊性质,就去想了一个\(o(n)\)的树上dp,然后打暴力验证,最后竟然把点分治给忘了!!!!,然后是T4,我研究了一下式子,发现满足条件的点可以写成\(deep_v-deep_u=kx+y\)的形式,但是我觉得复杂度应该没什么变化,还是个暴力,就直接打了个最省事的暴力走人了,考完发现数据太水了,第三,四题我的思路完全可以过,A掉的人还是不少的。
    总结一下:1.有一些思路先写下来,避免一会忘了。2.考试代码能优化一点是一点,别偷懒。3.合理安排时间,如果一个多小时还没正解思路就赶紧换题

    T1 异或

    思路:这题真是。。基本上人手一个AC,但是只有我去找循环节把自己搞傻了,没发现二进制下数字的表示规律。正解:考虑每一位的贡献,从低到高的第\(i\)位会每隔\(2^i\)个数变化一次,于是第\(i\)位对答案的贡献就是\(\lfloor\frac{n}{2^i}\rfloor\),把每一位的贡献加起来即可.
    代码如下:

    AC_code
    
    #include<bits/stdc++.h>
    signed main(){long long n,ans=0;scanf("%lld",&n);for(long long i=0;(1ll<<i)<=n;i++) ans+=(n/(1ll<<i));printf("%lld\n",ans);return 0; }
    
    

    T2 赌神

    思路:先说一下什么叫最优策略,就是保证在任何时候都没有更劣的策略,对于这道题而言,在最优策略下,不同的掉球情况下你最终所能获得的筹码数应该相同。
    image
    image
    image
    代码如下:

    AC_code
    #include<bits/stdc++.h>
    #define int long long
    #define re register int
    #define ii inline int
    #define iv inline void
    using namespace std;
    const int N=1e6+10;
    const int mo=998244353;
    int n,inv,ans=1,up,down=1;
    int a[N],jc[N];
    ii read()
    {
    	int x=0;char ch=getchar();bool f=1;
    	while(ch<'0' or ch>'9')
    	{
    		if(ch=='-') f=0;
    		ch=getchar();
    	}
    	while(ch>='0' and ch<='9')
    	{
    		x=(x<<1)+(x<<3)+(ch^48);
    		ch=getchar();
    	}
    	return f?x:(-x);
    }
    ii ksm(int d,int z)
    {
    	int out=1;
    	while(z){ if(z&1) out=out*d%mo;z>>=1;d=d*d%mo;}
    	return out%mo;
    }
    signed main()
    {
    	n=read();
    	for(re i=1;i<=n;i++) a[i]=read(),up=up+a[i];
    	jc[0]=1;
    	for(re i=1;i<N;i++) jc[i]=jc[i-1]*i%mo;
    	for(re i=1;i<=n;i++) down=down*jc[a[i]]%mo;
    	for(re i=1;i<=up;i++) ans=ans*i%mo;
    	ans=ans%mo*ksm(down,mo-2)%mo;
    	up=ksm(n,up)%mo;
    	ans=up*ksm(ans,mo-2)%mo;
    	printf("%lld\n",ans);
        return 0;
    }
    

    T3 路径

    思路:我现在只会复杂度在\(o(n^2\times log(n))\)左右的做法,因为数据较水的原因,这题可以过,思路是点分治,显然是运用点分治思想的裸题,但是要存储每个点到分治中心的距离,以及这个距离的个数,不能一个一个存,会超时,虽然这样优化以后复杂度也是假的。。。
    其实正解就是在此基础上用了一个fft优化,但是我不会,可以看这里
    代码如下:

    AC_code
    #include<bits/stdc++.h>
    #define re register int
    #define ii inline int
    #define iv inline void
    #define head heeadd
    #define next net
    #define ms md
    #define f() cout<<"YES"<<endl
    using namespace std;
    const int N=1e6+10;
    const int mo=998244353;
    int n,k,root,jd,tot;
    int to[N<<1],head[N],next[N<<1];
    int fa[N],deep[N],size[N],md[N];
    int cun[N],col[N],cun_col[N];
    int c2[N],cun_c2[N];
    bool vis[N],hav[N],h2[N];
    long long ans;
    ii read()
    {
    	int x=0;char ch=getchar();bool f=1;
    	while(ch<'0' or ch>'9')
    	{
    		if(ch=='-') f=0;
    		ch=getchar();
    	}
    	while(ch>='0' and ch<='9')
    	{
    		x=(x<<1)+(x<<3)+(ch^48);
    		ch=getchar();
    	}
    	return f?x:(-x);
    }
    iv add(int x,int y)
    {
    	to[++tot]=y;
    	next[tot]=head[x];
    	head[x]=tot;
    }
    long long ksm(long long d,long long z)
    {
    	long long out=1;
    	while(z)
    	{
    		if(z&1) out=out*d%mo;
    		z>>=1;
    		d=d*d%mo;	
    	}
    	return out;
    }
    iv get_root(int st,int f)
    {
    	size[st]=1,md[st]=0;
    	for(re i=head[st];i;i=next[i])
    	{
    		int p=to[i];
    		if(p==f or vis[p]) continue;
    		get_root(p,st);
    		size[st]+=size[p];
    		md[st]=max(md[st],size[p]);
    	}
    	md[st]=max(md[st],jd-size[st]);
    	if(md[st]<md[root]) root=st;
    }
    iv get_dis(int st,int f)
    {
    	deep[st]=deep[f]+1;
    	if(!h2[deep[st]]) h2[deep[st]]=1,cun_c2[++cun_c2[0]]=deep[st],c2[deep[st]]++;
    	else c2[deep[st]]++;
    	for(re i=head[st];i;i=next[i])
    	{
    		int p=to[i];
    		if(p==f or vis[p]) continue;
    		get_dis(p,st);
    	}
    }
    iv calc(int st)
    {
    	for(re i=1;i<=cun_col[0];i++) hav[cun_col[i]]=0,col[cun_col[i]]=0;
    	cun_col[0]=0;
    	cun_col[++cun_col[0]]=0,hav[0]=1,col[0]=1;
    	deep[st]=0;
    	for(re i=head[st];i;i=next[i])
    	{
    		int p=to[i];
    		if(vis[p]) continue;
    		cun_c2[0]=0;
    		get_dis(p,st);
    		for(re j=1;j<=cun_col[0];j++)
    		{
    			for(re b=1;b<=cun_c2[0];b++)
    				ans=(ans+1ll*ksm(cun_col[j]+cun_c2[b],k)%mo*1ll*col[cun_col[j]]%mo*1ll*c2[cun_c2[b]]%mo)%mo;
    		}
    		for(re b=1;b<=cun_c2[0];b++)
    		{
    			if(!hav[cun_c2[b]]) hav[cun_c2[b]]=1,cun_col[++cun_col[0]]=cun_c2[b],col[cun_c2[b]]+=c2[cun_c2[b]];
    			else col[cun_c2[b]]+=c2[cun_c2[b]];
    			h2[cun_c2[b]]=0,c2[cun_c2[b]]=0;	
    		}
    	}
    }
    iv solve(int st)
    {
    	vis[st]=1;
    	calc(st);
    	for(re i=head[st];i;i=next[i])
    	{
    		int p=to[i];
    		if(vis[p]) continue;
    		root=0,ms[0]=jd=size[p]+1;
    		get_root(p,st);
    		solve(p);
    	}
    }
    signed main()
    {
    	n=read(),k=read();
    	int u,v;
    	for(re i=1;i<n;i++)
    	{
    		u=read(),v=read();
    		add(u,v),add(v,u);	
    	}
    	ms[0]=jd=n+1;
    	get_root(1,0);
    	solve(root);
    	printf("%lld\n",ans);		
        return 0;
    }
    

    T4 树

    思路:这道题真的很暴力呀,数据真的是太水了。首先我们把满足条件的点化成\(deep_v-deep_u=k\times x+y\)的形式,然后我们用一个vector存储每一层(到达跟节点距离为x)的点,最后直接暴力枚举下跳即可。
    代码如下:

    AC_code
    #include<bits/stdc++.h>
    #define re register int
    #define ii inline int
    #define iv inline void
    #define head heeadd
    #define next net
    using namespace std;
    const int N=3e5+10;
    int n,q,tot,timi;
    int to[N<<1],head[N<<1],next[N<<1],val[N];
    int fa[N],deep[N],dfn[N],size[N],md[N];
    vector<int> v[N];
    ii read()
    {
    	int x=0;char ch=getchar();bool f=1;
    	while(ch<'0' or ch>'9')
    	{
    		if(ch=='-') f=0;
    		ch=getchar();
    	}
    	while(ch>='0' and ch<='9')
    	{
    		x=(x<<1)+(x<<3)+(ch^48);
    		ch=getchar();
    	}
    	return f?x:(-x);
    }
    iv add(int x,int y)
    {
    	to[++tot]=y;
    	next[tot]=head[x];
    	head[x]=tot;
    }
    iv dfs(int st,int f)
    {
    	deep[st]=deep[f]+1,fa[st]=f,dfn[st]=++timi,size[st]=1,md[st]=deep[st];
    	v[deep[st]].push_back(st);
    	for(re i=head[st];i;i=next[i])
    	{
    		int p=to[i];
    		if(p==f) continue;
    		dfs(p,st);
    		size[st]+=size[p];
    		md[st]=max(md[st],md[p]);
    	}	
    }
    iv change(int p,int x,int y,int z)
    {
    	for(re i=deep[p]+y;i<=md[p];i+=x)
    		for(re j=0;j<v[i].size();j++)
    			if(dfn[v[i][j]]>=dfn[p] and dfn[v[i][j]]< dfn[p]+size[p]) val[v[i][j]]+=z;
    }
    signed main()
    {
    	n=read(),q=read();
    	int u,v,opt,x,y,z;
    	for(re i=1;i<n;i++)
    	{
    		u=read(),v=read();
    		add(u,v),add(v,u);
    	}
    	dfs(1,0);
    	while(q--)
    	{
    		opt=read();
    		if(opt==1) u=read(),x=read(),y=read(),z=read(),change(u,x,y,z);
    		else u=read(),printf("%d\n",val[u]);
    	}
        return 0;
    }
    
  • 相关阅读:
    AJAX注册
    文件上传加水印
    邮箱
    AJAX完整操作
    跨窗体操作
    容器布局
    EF异常类
    SQL查出字段横向拼接,如:1,2,3,4
    asp.net三层结构中,SQL助手类DbHelperSQL
    正则抓取页面信息
  • 原文地址:https://www.cnblogs.com/WindZR/p/15263600.html
Copyright © 2011-2022 走看看