zoukankan      html  css  js  c++  java
  • 带权二分

    带权二分

    一种二分答案的套路,又叫做DP凸优化,wqs二分。

    用来解决一类题目,要求某个要求出现K次,并且,可以很显然的发现,在改变相应权值的时候,对应出现的次数具有单调性。而且很显然,这种题一般满足一定的要求。而且一般权值为整数二分就可以,但是有的题需要实数二分...而且,边界条件通常很麻烦,调起来想摔电脑。

    例题时间:

    BZOJ2654: tree

    题目大意:给你一个图,里面有白色边和黑色边,问恰好有k条边白色边的最小生成树

    直接贪心法肯定是错误的,因此,我们考虑带权二分。

    给定一个选择白色边的权值,之后把白色边的边权减去这个权值跑最小生成树,判断是否选了K个白色边。而这个权值通过二分找到。

    附上代码:

    #include <cstdio>
    #include <algorithm>
    #include <cmath>
    #include <cstring>
    #include <iostream>
    #include <queue>
    using namespace std;
    #define N 50005
    int fa[N],n,m,K,cnt;
    struct node
    {
    	int from,to,op;
    	int val;
    }e[N<<1];
    int sum,num;
    inline bool cmp(const node &a,const node &b)
    {
    	if(a.val==b.val)
    		return a.op>b.op;
    	return a.val<b.val;
    }
    inline int find(int x)
    {
    	if(x==fa[x])return x;
    	return fa[x]=find(fa[x]);
    }
    inline void add(int x,int y,int z,int op)
    {
    	e[++cnt].to=y;
    	e[cnt].from=x;
    	e[cnt].val=z;
    	e[cnt].op=op;
    	return ;
    }
    void init()
    {
    	for(int i=0;i<N;i++)
    	{
    		fa[i]=i;
    	}
    	return ;
    }
    inline int check(int x)
    {
    	sum=0,num=0;
    	init();
    	for(int i=1;i<=m;i++)
    	{
    		e[i].val+=e[i].op*x;
    	}
    	sort(e+1,e+m+1,cmp);
    	int cnt1=0;
    	for(int i=1;i<=m;i++)
    	{
    		int x=e[i].from,y=e[i].to;
    		int fx=find(x),fy=find(y);
    		if(fx!=fy)
    		{
    			sum+=e[i].val;
    			num+=e[i].op;
    			fa[fx]=fy;
    			cnt1++;
    		}
    		if(cnt1==n-1)break;
    	}
    	for(int i=1;i<=m;i++)
    	{
    		e[i].val-=e[i].op*x;
    	}
    	if(num>=K)return 1;
    	return 0;
    }
    int main()
    {
    	scanf("%d%d%d",&n,&m,&K);
    	for(int i=1;i<=m;i++)
    	{
    		int x,y,z,j;
    		scanf("%d%d%d%d",&x,&y,&z,&j);
    		add(x,y,z,j^1);
    	}
    	int l=-101,r=101;
    	int ans;
    	while(l<r)
    	{
    		int mid=(l+r)>>1;
    		if(check(mid))
    		{
    			l=mid+1;
    			ans=sum-K*mid;
    		}else
    		{
    			r=mid;
    		}
    	}
    	printf("%d
    ",ans);
    	return 0;
    }

    BZOJ5311: 贞鱼

    题目大意:给你n个点,每个点与点之间有权值,将n个点分成k份,每份是连续的,每份的代价是这份中任意两点的权值和,求最小代价。

    二分分割一次的权值,之后在DP的时候转移一下即可。至于DP的东西去看https://www.cnblogs.com/Winniechen/p/9218864.html

    附上代码:

    #include <cstdio>
    #include <cmath>
    #include <algorithm>
    #include <iostream>
    #include <queue>
    #include <cstdlib>
    #include <cstring>
    using namespace std;
    #define N 4005
    static char buf[1000000],*p1,*p2;
    #define nc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++)
    #define calc(x,y) (f[x]+((sum[y][y]+sum[x][x]-sum[y][x]-sum[x][y])>>1))
    int rd()
    {
    	register int x=0;register char c=nc();
    	while(c<'0'||c>'9')c=nc();
    	while(c>='0'&&c<='9')x=(((x<<2)+x)<<1)+c-'0',c=nc();
    	return x;
    }
    int sum[N][N],num[N],k,n,s[N][N];long long f[N];
    struct node{int l,r,p;}q[N];
    bool cmp(int i,int j,int k)
    {
    	long long t1=calc(i,k),t2=calc(j,k);
    	if(t1==t2)return num[i]<=num[j];
    	return t1<t2;
    }
    int find(const node &t,int x)
    {
    	int l=t.l,r=t.r+1;
    	while(l<r)
    	{
    		int m=(l+r)>>1;
    		if(cmp(x,t.p,m))r=m;
    		else l=m+1;
    	}
    	return l;
    }
    int check(int x)
    {
    	memset(f,0x3f,sizeof(f));
    	f[0]=0;int h=0,t=0;q[t++]=(node){1,n,0};num[0]=0;
    	for(int i=1;i<=n;i++)
    	{
    		if(q[h].r<i&&h<t)h++;
    		f[i]=calc(q[h].p,i)+x;num[i]=num[q[h].p]+1;
    		if(cmp(i,q[t-1].p,n))
    		{
    			while(h<t&&cmp(i,q[t-1].p,q[t-1].l))t--;
    			if(h==t)q[t++]=(node){i+1,n,i};
    			else
    			{
    				int p=find(q[t-1],i);
    				q[t-1].r=p-1;
    				q[t++]=(node){p,n,i};
    			}
    		}
    	}
    	return num[n];
    }
    int main()
    {
    	n=rd();k=rd();
    	for(register int i=1;i<=n;i++)
    	{
    		for(register int j=1;j<=n;j++)
    		{
    			sum[i][j]=sum[i][j-1]+rd();
    		}
    	}
    	for(register int i=1;i<=n;i++)
    	{
    		for(register int j=1;j<=n;j++)
    		{
    			sum[i][j]+=sum[i-1][j];
    		}
    	}
    	int l=0,r=1<<30;
    	while(l<r)
    	{
    		int m=(l+r)>>1;
    		if(check(m)>k)l=m+1;
    		else r=m;
    	}
    	check(l);
    	printf("%lld
    ",f[n]-1ll*l*k);
    }

    BZOJ1812: [Ioi2005]riv

    题目大意:没有题目大意,直接去看题面吧...

    Description

    几乎整个Byteland王国都被森林和河流所覆盖。小点的河汇聚到一起,形成了稍大点的河。就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海。这条大河的入海口处有一个村庄——名叫Bytetown 在Byteland国,有n个伐木的村庄,这些村庄都座落在河边。目前在Bytetown,有一个巨大的伐木场,它处理着全国砍下的所有木料。木料被砍下后,顺着河流而被运到Bytetown的伐木场。Byteland的国王决定,为了减少运输木料的费用,再额外地建造k个伐木场。这k个伐木场将被建在其他村庄里。这些伐木场建造后,木料就不用都被送到Bytetown了,它们可以在 运输过程中第一个碰到的新伐木场被处理。显然,如果伐木场座落的那个村子就不用再付运送木料的费用了。它们可以直接被本村的伐木场处理。 注意:所有的河流都不会分叉,也就是说,每一个村子,顺流而下都只有一条路——到bytetown。 国王的大臣计算出了每个村子每年要产多少木料,你的任务是决定在哪些村子建设伐木场能获得最小的运费。其中运费的计算方法为:每一块木料每千米1分钱。 编一个程序: 1.从文件读入村子的个数,另外要建设的伐木场的数目,每年每个村子产的木料的块数以及河流的描述。 2.计算最小的运费并输出。

    Input

    第一行 包括两个数 n(2<=n<=100),k(1<=k<=50,且 k<=n)。n为村庄数,k为要建的伐木场的数目。除了bytetown外,每个村子依次被命名为1,2,3……n,bytetown被命名为0。 接下来n行,每行包涵3个整数 wi——每年i村子产的木料的块数 (0<=wi<=10000) vi——离i村子下游最近的村子(或bytetown)(0<=vi<=n) di——vi到i的距离(km)。(1<=di<=10000) 保证每年所有的木料流到bytetown的运费不超过2000,000,000分 50%的数据中n不超过20。

    Output

    输出最小花费,精确到分。
     
    这道题其实并不用带权二分的,直接树形DP,N^2*K(N^2*K^2)都可以过...带权二分跑不过N^2*K...二分建立镇守府的权值,状态f[i][j]表示i的子树中,所有节点最多到第j层父亲的最小代价,之后再记录一个建立了多少个镇守府即可。
     
    附上代码:
    #include <cstdio>
    #include <algorithm>
    #include <cmath>
    #include <cstring>
    #include <iostream>
    #include <cstdlib>
    #include <queue>
    #include <bitset>
    using namespace std;
    #define N 105
    struct node
    {
    	int to,next;
    }e[N<<1];
    int a[N],head[N],dis[N],v[N],cnt,n,m,siz[N],fa[N][N],sf[N],num[N][N],f[N][N],mid;
    void add(int x,int y){e[cnt].to=y;e[cnt].next=head[x];head[x]=cnt++;}
    void pre(int x)
    {
    	fa[x][0]=x;
    	for(int i=head[x];i!=-1;i=e[i].next)
    	{
    		int to1=e[i].to;dis[to1]=dis[x]+v[to1];
    		for(int j=0;j<=sf[x];j++)fa[to1][++sf[to1]]=fa[x][j];
    		pre(to1);
    	}
    }
    void dfs(int x)
    {
    	for(int i=0,t;i<=sf[x];i++)t=fa[x][i],f[x][i]=(dis[x]-dis[t])*a[x];
    	for(int i=head[x];i!=-1;i=e[i].next)
    	{
    		int to1=e[i].to;dfs(to1);
    		for(int j=0;j<=sf[x];j++)
    		{
    			if(f[to1][0]+mid<f[to1][j+1]||(f[to1][0]==f[to1][j+1]&&num[to1][0]+1<=num[to1][j+1]))
    			{
    				num[x][j]+=num[to1][0]+1;
    				f[x][j]+=f[to1][0]+mid;
    			}else f[x][j]+=f[to1][j+1],num[x][j]+=num[to1][j+1];
    		}
    	}
    }
    int check()
    {
    	memset(f,0x3f,sizeof(f));memset(num,0,sizeof(num));dfs(0);
    	return num[0][0];
    }
    int main()
    {
    	memset(head,-1,sizeof(head));
    	scanf("%d%d",&n,&m);
    	for(int i=1,x;i<=n;i++)scanf("%d%d%d",&a[i],&x,&v[i]),add(x,i);
    	int l=0,r=1<<21;pre(0);
    	while(l<r)
    	{
    		mid=(l+r)>>1;
    		if(check()>m)l=mid+1;
    		else r=mid;
    	}mid=l;check();
    	printf("%lld
    ",f[0][0]-1ll*mid*m);
    	return 0;
    }

    BZOJ4609: [Wf2016]Branch Assignment

    题目没有大意

    直接求出dis[i]表示正向从i到b+1,和反向从b+1到i的权值和,之后我们发现,将dis[i]排序,之后可以得出,取连续的一段必定不会更劣(贪心可证,为了使更小的dis分配到更大的siz)之后通过决策单调性转移一下即可。

    附上代码:

    #include <cstdio>
    #include <cmath>
    #include <algorithm>
    #include <iostream>
    #include <queue>
    #include <cstdlib>
    #include <cstring>
    #include <vector>
    using namespace std;
    #define N 5005
    #define ll long long
    #define calc(x,y) (f[x]+(sum[y]-sum[x])*(y-x-1))
    __attribute__((optimize("-O3")))inline char nc() {
        static char buf[100000],*p1,*p2;
        return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
    }
    __attribute__((optimize("-O3")))int rd() {
        int x=0; char ch=nc();
        while(ch<'0'||ch>'9') ch=nc();
        while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=nc();
        return x;
    }
    struct node{int l,r,p;}q[N];vector<pair<int ,int > >G[2][N];
    int n,b,s,r,num[N],vis[N];ll dis[N],a[N],sum[N],f[N];
    void Dijkstra(bool op)
    {
        memset(dis,0x3f,sizeof(dis));dis[b+1]=0;memset(vis,0,sizeof(vis));
        priority_queue<pair<ll,int> >q;q.push(make_pair(0,b+1));
        while(!q.empty())
        {
            int x=q.top().second;q.pop();if(vis[x])continue;vis[x]=1;
            for(int i=0;i<G[op][x].size();i++)
            {
                int to1=G[op][x][i].first,val=G[op][x][i].second;
                if(dis[to1]>dis[x]+val)dis[to1]=dis[x]+val,q.push(make_pair(-dis[to1],to1));
            }
        }
        for(int i=1;i<=b;i++)a[i]+=dis[i];
    }
    int find(const node &t,int x)
    {
        int l=t.l,r=t.r+1;
        while(l<r)
        {
            int m=(l+r)>>1;
            if(calc(t.p,m)<=calc(x,m))l=m+1;
            else r=m;
        }return l;
    }
    int check(ll x)
    {
        int h=0,t=0;q[t++]=(node){0,n,0};f[0]=0;num[0]=0;
        for(int i=1;i<=n;i++)
        {
            while(h<t&&q[h].r<i)h++;
            f[i]=calc(q[h].p,i)+x;num[i]=num[q[h].p]+1;
            if(calc(i,n)<calc(q[t-1].p,n))
            {
                while(h<t&&calc(q[t-1].p,q[t-1].l)>calc(i,q[t-1].l))t--;
                if(h==t)q[t++]=(node){i,n,i};
                else
                {
                    int x=find(q[t-1],i);q[t-1].r=x-1;q[t++]=(node){x,n,i};
                }
            }
        }
        return num[n];
    }
    int main()
    {
        n=rd();b=rd();s=rd();r=rd();
        for(int i=1,x,y,z;i<=r;i++)x=rd(),y=rd(),z=rd(),G[0][x].push_back(make_pair(y,z)),G[1][y].push_back(make_pair(x,z));
        Dijkstra(0);Dijkstra(1);n=b;sort(a+1,a+n+1);for(int i=1;i<=n;i++)sum[i]=sum[i-1]+a[i];
        ll l=0,r=1ll<<60;
        while(l<r)
        {
            ll m=(l+r)>>1;
            if(check(m)>s)l=m+1;
            else r=m;
        }check(l);
        printf("%lld
    ",f[n]-l*s);
    }
    

      

    大概还有什么林克卡特树之类的,就不多说了...

  • 相关阅读:
    不用if/else swich for while实现累加
    1.java数据结构
    青蛙跳台阶问题
    next与nextLine
    9.遗传算法
    Docker镜像管理
    Docker镜像管理
    CentOS 6.7安装Docker
    CentOS 6.7安装Docker
    数字三角形_递归_递推(动态规划)
  • 原文地址:https://www.cnblogs.com/Winniechen/p/10034423.html
Copyright © 2011-2022 走看看