本次作业来源于:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/2822
中文词频统计
1. 下载一长篇中文小说。
2. 从文件读取待分析文本。
# -*- coding: utf-8 -*-
import struct
import os
# 拼音表偏移,
startPy = 0x1540;
# 汉语词组表偏移
startChinese = 0x2628;
# 全局拼音表
GPy_Table = {}
# 解析结果
# 元组(词频,拼音,中文词组)的列表
# 原始字节码转为字符串
def byte2str(data):
pos = 0
str = ''
while pos < len(data):
c = chr(struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0])
if c != chr(0):
str += c
pos += 2
return str
# 获取拼音表
def getPyTable(data):
data = data[4:]
pos = 0
while pos < len(data):
index = struct.unpack('H', bytes([data[pos],data[pos + 1]]))[0]
pos += 2
lenPy = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]
pos += 2
py = byte2str(data[pos:pos + lenPy])
GPy_Table[index] = py
pos += lenPy
# 获取一个词组的拼音
def getWordPy(data):
pos = 0
ret = ''
while pos < len(data):
index = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]
ret += GPy_Table[index]
pos += 2
return ret
# 读取中文表
def getChinese(data):
GTable = []
pos = 0
while pos < len(data):
# 同音词数量
same = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]
# 拼音索引表长度
pos += 2
py_table_len = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]
# 拼音索引表
pos += 2
py = getWordPy(data[pos: pos + py_table_len])
# 中文词组
pos += py_table_len
for i in range(same):
# 中文词组长度
c_len = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]
# 中文词组
pos += 2
word = byte2str(data[pos: pos + c_len])
# 扩展数据长度
pos += c_len
ext_len = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]
# 词频
pos += 2
count = struct.unpack('H', bytes([data[pos], data[pos + 1]]))[0]
# 保存
GTable.append((count, py, word))
# 到下个词的偏移位置
pos += ext_len
return GTable
def scel2txt(file_name):
print('-' * 60)
with open(file_name, 'rb') as f:
data = f.read()
print("词库名:", byte2str(data[0x130:0x338])) # .encode('GB18030')
print("词库类型:", byte2str(data[0x338:0x540]))
print("描述信息:", byte2str(data[0x540:0xd40]))
print("词库示例:", byte2str(data[0xd40:startPy]))
getPyTable(data[startPy:startChinese])
getChinese(data[startChinese:])
return getChinese(data[startChinese:])
if __name__ == '__main__':
# scel所在文件夹路径
in_path = r"F: ext" #修改为你的词库文件存放文件夹
# 输出词典所在文件夹路径
out_path = r"F: ext" # 转换之后文件存放文件夹
fin = [fname for fname in os.listdir(in_path) if fname[-5:] == ".scel"]
for f in fin:
try:
for word in scel2txt(os.path.join(in_path, f)):
file_path=(os.path.join(out_path, str(f).split('.')[0] + '.txt'))
# 保存结果
with open(file_path,'a+',encoding='utf-8')as file:
file.write(word[2] + '
')
os.remove(os.path.join(in_path, f))
except Exception as e:
print(e)
pass
3. 生成词云
import requests
from bs4 import BeautifulSoup
from fake_useragent import UserAgent
import re
import jieba
from wordcloud import WordCloud
import matplotlib.pyplot as plt
def get_txt_from_net():
c_str = []
ua = UserAgent()
headers = {'User_Agent': ua.random}
for i in range(1,18):
url = "http://t.icesmall.cn/book/53/826/"+str(i)+".html"
html = requests.get(url, headers=headers)
html.encoding = 'utf-8'
soup = BeautifulSoup(html.text,'lxml')
s = soup.find('div',id="Content").get_text()
s = re.sub(r'p{.*?}','',s).lstrip().rstrip().strip()
c_str.append(s)
c_txt = ''.join(c_str)
with open('Ctxt.txt','w',encoding='utf-8') as f:
f.write(c_txt)
def get_word_from_txt():
with open('Ctxt.txt','r',encoding='utf-8') as f:
ctxt = f.read()
jieba.load_userdict('people.txt') # 词库文本文件
stxt = jieba.lcut(ctxt)
stops = open('停用词表.txt','r',encoding='utf-8').read()
stops = stops.split()
tokens = [token for token in stxt if token not in stops]
tokenstr = " ".join(tokens)
ciyun = WordCloud(background_color = '#36f',width=400,height=300,margin = 1).generate(tokenstr)
stxtword = set(tokens)
stxtcount = {}
for i in stxtword:
if len(i) == 1:
continue
stxtcount[i] = tokens.count(i)
stxtcount = sorted(stxtcount.items(),key=lambda key:key[1],reverse=True)
stxtcount = stxtcount[:20]
for i in range(20):
print(stxtcount[i])
plt.imshow(ciyun)
plt.axis("off")
plt.show()
ciyun.to_file(r'The_Kite_Runner.jpg')
if __name__ == '__main__':
get_txt_from_net()
get_word_from_txt()
4. 更新词库,加入所分析对象的专业词汇。
