zoukankan      html  css  js  c++  java
  • [POJ3580]SuperMemo

    Problem

    ADD x y D: x到y每个数加上D
    REVERSE x y: 翻转x到y这个区间
    REVOLVE x y T: x到y区间往后旋转T位
    INSERT x P: 在第x个数后插入P
    DELETE x: 删除第x个数
    MIN x y: 求x到y的区间最小值

    Solution

    splay模板题

    Notice

    注意0的大坑。

    Code

    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    #define sqz main
    #define ll long long
    #define reg register int
    #define rep(i, a, b) for (reg i = a; i <= b; i++)
    #define per(i, a, b) for (reg i = a; i >= b; i--)
    #define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
    const int INF = 1e9, N = 400000;
    const double eps = 1e-6, phi = acos(-1.0);
    ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
    ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
    if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
    void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
    int point = 0, T[N + 5], root;
    struct node
    {
        int val[N + 5], parent[N + 5], son[2][N + 5], Min[N + 5], Size[N + 5], tag[N + 5], add[N + 5];
        inline void up(int u)
        {
            Min[u] = val[u];
            if (son[0][u]) Min[u] = min(Min[u], Min[son[0][u]]);
            if (son[1][u]) Min[u] = min(Min[u], Min[son[1][u]]);
            Size[u] = Size[son[0][u]] + Size[son[1][u]] + 1;
        }
        inline void down(int u)
        {
            if (add[u])
            {
                if (son[0][u])
                {
                val[son[0][u]] += add[u];
                add[son[0][u]] += add[u];
                Min[son[0][u]] += add[u];
                }
                if (son[1][u])
                {
                val[son[1][u]] += add[u];
                add[son[1][u]] += add[u];
                Min[son[1][u]] += add[u];
                }
                add[u] = 0;
            }
            if (tag[u])
            {
                swap(son[0][u], son[1][u]);
                tag[son[0][u]] ^= 1, tag[son[1][u]] ^= 1;
                tag[u] = 0;
            }
        }
    
        void Newnode(int &u, int from, int v)
        {
            u = ++point;
            parent[u] = from;
            son[0][u] = son[1][u] = 0;
            tag[u] = add[u] = 0;
            Min[u] = val[u] = v;
            Size[u] = 1;
        }
        void Build(int l, int r, int &u, int from)
        {
            int mid = (l + r) >> 1;
            Newnode(u, from, T[mid]);
            if (l < mid) Build(l, mid - 1, son[0][u], u);
            if (mid < r) Build(mid + 1, r, son[1][u], u);
            up(u);
        }
        int Find(int u, int k)
        {
            down(u);
            if (Size[son[0][u]] + 1 == k) return u;
            if (Size[son[0][u]] >= k) return Find(son[0][u], k);
            else return Find(son[1][u], k - Size[son[0][u]] - 1);
        }
    
    	void Rotate(int x, int &rt)
    	{
    		int y = parent[x], z = parent[y];
    		down(y), down(x);
    		int l = (son[1][y] == x), r = 1 - l;
    		if (y == rt) rt = x;
    		else if (son[0][z] == y) son[0][z] = x;
    		else son[1][z] = x;
    		parent[x] = z;
    		parent[son[r][x]] = y, son[l][y] = son[r][x];
    		parent[y] = x, son[r][x] = y;
    		up(y);
    		up(x);
    	}
    	void Splay(int x, int &rt)
    	{
    		while (x != rt)
    		{
    			int y = parent[x], z = parent[y];
    			if (y != rt)
    			{
    				if ((son[0][z] == y) ^ (son[0][y] == x))
    					Rotate(x, rt);
    				else Rotate(y, rt);
    			}
    			Rotate(x, rt);
    		}
    	}
    	void Split(int l, int r)
    	{
    	    int x = Find(root, l - 1 + 1);
    	    int y = Find(root, r + 1 + 1);
    	    Splay(x, root);
    	    Splay(y, son[1][root]);
    	}
    
    	void Add(int l, int r, int v)
    	{
    	    Split(l, r);
    	    add[son[0][son[1][root]]] += v;
    	    Min[son[0][son[1][root]]] += v;
    	    val[son[0][son[1][root]]] += v;
    	    up(son[1][root]);
    	    up(root);
    	}
    	void Insert(int pos, int v)
    	{
    	    Split(pos + 1, pos);
            Newnode(son[0][son[1][root]], son[1][root], v);
            up(son[1][root]);
            up(root);
    	}
    	void Delete(int x)
    	{
    	    Split(x, x);
    	    son[0][son[1][root]] = 0;
    	    up(son[1][root]);
    	    up(root);
    	}
    
    	void Reverse(int l, int r)
    	{
    	    Split(l, r);
    	    tag[son[0][son[1][root]]] ^= 1;
    	}
        void Revolve(int l, int r, int t)
        {
            t = (t % (r - l + 1) + r - l + 1) % (r - l + 1);
            if (!t) return;
            Split(r - t + 1, r);
            int now = son[0][son[1][root]];
            son[0][son[1][root]] = 0;
            up(son[1][root]);
            up(root);
            Split(l, l - 1);
            son[0][son[1][root]] = now;
            parent[now] = son[1][root];
            up(son[1][root]);
            up(root);
        }
        int Query(int l, int r)
        {
            Split(l, r);
            return Min[son[0][son[1][root]]];
        }
    }Splay_tree;
    int sqz()
    {
        int n = read();
        rep(i, 1, n) T[i] = read();
        T[0] = INF, T[n + 1] = INF;
        Splay_tree.Build(0, n + 1, root, 0);
        int q = read();
        while (q--)
        {
            char st[10]; int x, y, v;
            scanf("%s", st);
            switch (st[0])
            {
                case 'A': x = read(), y = read(), v = read(), Splay_tree.Add(x, y, v); break;
                case 'R':
                    if (st[3] == 'E') x = read(), y = read(), Splay_tree.Reverse(x, y);
                        else x = read(), y = read(), v = read(), Splay_tree.Revolve(x, y, v);
                    break;
                case 'I': x = read(), y = read(), Splay_tree.Insert(x, y); break;
                case 'D': x = read(), Splay_tree.Delete(x); break;
                case 'M': x = read(), y = read(), printf("%d
    ", Splay_tree.Query(x, y)); break;
            }
        }
        return 0;
    }
    
  • 相关阅读:
    所谓的底层问题
    字符流与字节流
    字节和字符,对信息进行编码
    Asp.net和数据库的一些概念
    谈.NET,由编译器开始谈起
    Extjs中的dom,Ext.Element和Ext.Component对象的关系
    WCF和Delphi通信时序列化的问题
    认真的考虑了下领域模型,发现设计是最难的部分。书上的例子各个对象职责划分的不错,可惜能看懂不代表能设计出。
    MS100 [011020]
    MS100[001]
  • 原文地址:https://www.cnblogs.com/WizardCowboy/p/7629018.html
Copyright © 2011-2022 走看看