Problem
有n个数,为1~n。有两种操作:
Cut x y z: 把x到y的区间切割下来后,放到改变后的序列的z位后
Flip x y: 把x到y的区间翻转
Solution
splay模板题
Notice
注意0
Code
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define sqz main
#define ll long long
#define reg register int
#define rep(i, a, b) for (reg i = a; i <= b; i++)
#define per(i, a, b) for (reg i = a; i >= b; i--)
#define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
const int INF = 1e9, N = 300000;
const double eps = 1e-6, phi = acos(-1);
ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
int point, root, cnt, X[N + 5], Y[N + 5], n;
struct node
{
int val[N + 5], son[2][N + 5], parent[N + 5], Size[N + 5], rev[N + 5];
inline void up(int u)
{
Size[u] = Size[son[0][u]] + Size[son[1][u]] + 1;
}
inline void down(int u)
{
if (rev[u])
{
swap(son[0][u], son[1][u]);
rev[son[0][u]] ^= 1, rev[son[1][u]] ^= 1;
rev[u] = 0;
}
}
void Newnode(int &u, int from, int v)
{
u = ++point;
val[u] = v;
son[0][u] = son[1][u] = rev[u] = 0;
parent[u] = from, Size[u] = 1;
}
void Build(int &u, int l, int r, int from)
{
int mid = (l + r) >> 1;
Newnode(u, from, X[mid]);
if (l < mid) Build(son[0][u], l, mid - 1, u);
if (r > mid) Build(son[1][u], mid + 1, r, u);
up(u);
}
void Init(int n)
{
rep(i, 1, n) X[i] = i;
point = 0, cnt = 0;
son[0][0] = son[1][0] = Size[0] = val[0] = parent[0] = rev[0] = 0;
Newnode(root, 0, -1);
Newnode(son[1][root], root, -1);
Build(son[0][son[1][root]], 1, n, son[1][root]);
up(son[1][root]), up(root);
}
void Rotate(int x, int &rt)
{
int y = parent[x], z = parent[y];
down(y), down(x);
int l = (son[1][y] == x), r = 1 - l;
if (y == rt) rt = x;
else if (son[0][z] == y) son[0][z] = x;
else son[1][z] = x;
parent[x] = z;
parent[son[r][x]] = y, son[l][y] = son[r][x];
parent[y] = x, son[r][x] = y;
up(y), up(x);
}
void Splay(int x, int &rt)
{
while (x != rt)
{
int y = parent[x], z = parent[y];
down(z), down(y);
if (y != rt)
{
if ((son[0][z] == y) ^ (son[0][y] == x))
Rotate(x, rt);
else Rotate(y, rt);
}
Rotate(x, rt);
}
}
void Out(int u)
{
if (!u || val[u] == 0) return;
down(u);
Out(son[0][u]);
if (val[u] != -1) Y[++cnt] = val[u];
Out(son[1][u]);
}
int Find(int u, int x)
{
down(u);
if (x <= Size[son[0][u]]) return Find(son[0][u], x);
if (x > Size[son[0][u]] + 1) return Find(son[1][u], x - Size[son[0][u]] - 1);
return u;
}
void Split(int l, int r)
{
int x = Find(root, l - 1 + 1);
int y = Find(root, r + 1 + 1);
Splay(x, root);
Splay(y, son[1][root]);
}
void Cut(int x, int y, int z)
{
Split(x, y);
int tt = son[0][son[1][root]];
son[0][son[1][root]] = 0;
up(son[1][root]), up(root);
Split(z + 1, z);
son[0][son[1][root]] = tt;
parent[tt] = son[1][root];
up(son[1][root]), up(root);
}
void Flip(int x, int y)
{
Split(x, y);
rev[son[0][son[1][root]]] ^= 1;
}
}Splay_tree;
int sqz()
{
while(1)
{
n = read(); int q = read();
if (n < 0 && q < 0) break;
Splay_tree.Init(n);
char op[10];
int x, y, z;
while (q--)
{
scanf("%s", op);
if (op[0] == 'C')
{
x = read(), y = read(), z = read();
Splay_tree.Cut(x, y, z);
}
else
{
x = read(), y = read();
Splay_tree.Flip(x, y);
}
}
Splay_tree.Out(root);
rep(i, 1, n - 1) printf("%d ", Y[i]);
printf("%d
", Y[n]);
}
return 0;
}