zoukankan      html  css  js  c++  java
  • [BZOJ3224]普通平衡树

    Problem

    您需要写一种数据结构(可参考题目标题),来维护一些数,其中需要提供以下操作:

    1. 插入x数
    2. 删除x数(若有多个相同的数,因只删除一个)
    3. 查询x数的排名(若有多个相同的数,因输出最小的排名)
    4. 查询排名为x的数
    5. 求x的前驱(前驱定义为小于x,且最大的数)
    6. 求x的后继(后继定义为大于x,且最小的数)

    Solution

    Treap模板题:
    Treap为一种节点的优先级满足堆性质的二叉搜索树。
    非旋转Treap:
    代码较短,常数较Splay较小,比旋转Treap稍大。但因为不是旋转的,所以支持区间操作和可持久化。
    最主要的操作为Merge,Split
    建树方法参照笛卡尔树的建树方法。
    推荐网站:http://memphis.is-programmer.com/posts/46317.html
    旋转Treap:
    常数十分的小,非常的好用,但不支持区间操作和可持久化。
    主要操作为单旋:左旋和右旋

    Notice

    还不够熟练,很容易打错

    Code

    非旋转Treap

    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    #define sqz main
    #define ll long long
    #define reg register int
    #define pairint pair<int, int>
    #define rep(i, a, b) for (reg i = a; i <= b; i++)
    #define per(i, a, b) for (reg i = a; i >= b; i--)
    #define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
    const int INF = 1e9, N = 100000;
    const double eps = 1e-6, phi = acos(-1.0);
    ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
    ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
    if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
    void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
    int point = 0, root, a[N + 5];
    struct node
    {
        int Size[N + 5], Val[N + 5], Level[N + 5], Son[2][N + 5];
        inline void up(int u)
        {
            Size[u] = Size[Son[0][u]] + Size[Son[1][u]] + 1;
        }
        int Newnode(int v)
        {
            int u = ++point;
            Val[u] = v, Level[u] = rand();
            Son[0][u] = Son[1][u] = 0, Size[u] = 1;
            return u;
        }
        int Merge(int X, int Y)
        {
            if (X * Y == 0) return X + Y;
            if (Level[X] < Level[Y])
            {
                Son[1][X] = Merge(Son[1][X], Y);
                up(X); return X;
            }
            else
            {
                Son[0][Y] = Merge(X, Son[0][Y]);
                up(Y); return Y;
            }
        }
        void Split(int u, int t, int &x, int &y)
        {
            if (!u)
    		{
    			x = y = 0;
    			return;
    		}
            if (Val[u] <= t) x = u, Split(Son[1][u], t, Son[1][u], y);
            else y = u, Split(Son[0][u], t, x, Son[0][u]);
            up(u);
        }
        void Build(int l, int r)
        {
            int last, u, s[N + 5], top = 0;
            rep(i, l, r)
            {
                int u = Newnode(a[i]);
                last = 0;
                while (top && Level[s[top]] < Level[u])
                {
                    up(s[top]);
                    last = s[top];
                    s[top--] = 0;
                }
                if (top) Son[1][s[top]] = u;
                Son[0][u] = last;
                s[++top] = u;
            }
            while (top) up(s[top--]);
            root = s[1];
        }
        int Find_rank(int v)
        {
            int x, y, t;
        	Split(root, v - 1, x, y);
        	t = Size[x];
        	root = Merge(x, y);
        	return t + 1;
        }
        int Find_num(int u, int v)
        {
            if (!u) return 0;
            if (v <= Size[Son[0][u]]) return Find_num(Son[0][u], v);
            else if (v <= Size[Son[0][u]] + 1) return u;
            else return Find_num(Son[1][u], v - Size[Son[0][u]] - 1);
        }
        void Insert(int v)
        {
        	int t = Newnode(v), x, y;
            Split(root, v, x, y);
        	root = Merge(Merge(x, t), y);
        }
        void Delete(int v)
        {
            int x, y, z;
            Split(root, v, x, z), Split(x, v - 1, x, y);
            root = Merge(Merge(x, Merge(Son[0][y], Son[1][y])), z);
        }
    }Treap;
    int sqz()
    {
        int n = read(), x = 0, y = 0;
        while (n--)
        {
            int op = read(), t = read();
            switch (op)
            {
                case 1: Treap.Insert(t); break;
                case 2: Treap.Delete(t); break;
                case 3: printf("%d
    ", Treap.Find_rank(t)); break;
                case 4: printf("%d
    ", Treap.Val[Treap.Find_num(root, t)]); break;
                case 5: Treap.Split(root, t - 1, x, y);
    					printf("%d
    ", Treap.Val[Treap.Find_num(x, Treap.Size[x])]);
    					root = Treap.Merge(x, y); break;
                case 6: Treap.Split(root, t, x, y);
    					printf("%d
    ", Treap.Val[Treap.Find_num(y, 1)]);
    					root = Treap.Merge(x, y); break;
            }
        }
        return 0;
    }
    

    旋转Treap

    #include<cmath>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    #define sqz main
    #define ll long long
    #define reg register int
    #define rep(i, a, b) for (reg i = a; i <= b; i++)
    #define per(i, a, b) for (reg i = a; i >= b; i--)
    #define travel(i, u) for (reg i = head[u]; i; i = edge[i].next)
    const int INF = 1e9, N = 100000;
    const double eps = 1e-6, phi = acos(-1.0);
    ll mod(ll a, ll b) {if (a >= b || a < 0) a %= b; if (a < 0) a += b; return a;}
    ll read(){ ll x = 0; int zf = 1; char ch; while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
    if (ch == '-') zf = -1, ch = getchar(); while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;}
    void write(ll y) { if (y < 0) putchar('-'), y = -y; if (y > 9) write(y / 10); putchar(y % 10 + '0');}
    int point = 0, pre, suf, root;
    struct node
    {
    	int Val[N + 5], Level[N + 5], Size[N + 5], Son[2][N + 5], Num[N + 5];
    	inline void up(int u)
    	{
    		Size[u] = Size[Son[0][u]] + Size[Son[1][u]] + Num[u];
    	}
    	inline void Newnode(int &u, int v)
    	{
    		u = ++point;
    		Level[u] = rand(), Val[u] = v;
    		Size[u] = Num[u] = 1, Son[0][u] = Son[1][u] = 0;
    	}
    	inline void Lturn(int &x)
    	{
    		int y = Son[1][x]; Son[1][x] = Son[0][y], Son[0][y] = x;
    		Size[y] = Size[x]; up(x); x = y;
    	}
    	inline void Rturn(int &x)
    	{
    		int y = Son[0][x]; Son[0][x] = Son[1][y], Son[1][y] = x;
    		Size[y] = Size[x]; up(x); x = y;
    	}
    	
    	void Insert(int &u, int t)
    	{
    		if (u == 0)
    		{
    			Newnode(u, t);
    			return;
    		}
    		Size[u]++;
    		if (t == Val[u]) Num[u]++;
    		else if (t < Val[u])
    		{
    			Insert(Son[0][u], t);
    			if (Level[Son[0][u]] < Level[u]) Rturn(u);
    		}
    		else if (t > Val[u])
    		{
    			Insert(Son[1][u], t);
    			if (Level[Son[1][u]] < Level[u]) Lturn(u);
    		}
    	}
    	void Delete(int &u, int t)
    	{
    		if (!u) return;
    		if (Val[u] == t)
    		{
    			if (Num[u] > 1)
    			{
    				Num[u]--, Size[u]--;
    				return;
    			}
    			if (Son[0][u] * Son[1][u] == 0) u = Son[0][u] + Son[1][u];
    			else if (Level[Son[0][u]] < Level[Son[1][u]]) Rturn(u), Delete(u, t);
    			else Lturn(u), Delete(u, t);
    		}
    		else if (t < Val[u]) Size[u]--, Delete(Son[0][u], t);
    		else Size[u]--, Delete(Son[1][u], t);
    	}
    	
    	int Find_rank(int u, int t)
    	{
    		if (!u) return 0;
    		if (Val[u] == t) return Size[Son[0][u]] + 1;
    		else if (t < Val[u]) return Find_rank(Son[0][u], t);
    		else return Size[Son[0][u]] + Num[u] + Find_rank(Son[1][u], t);
    	}
    	int Find_num(int u, int t)
    	{
    		if (!u) return 0;
    		if (t <= Size[Son[0][u]]) return Find_num(Son[0][u], t);
    		else if (t <= Size[Son[0][u]] + Num[u]) return Val[u];
    		else return Find_num(Son[1][u], t - Size[Son[0][u]] - Num[u]);
    	}
    	void Find_pre(int u, int t)
    	{
    		if (!u) return;
    		if (t > Val[u])
    		{
    			pre = u;
    			Find_pre(Son[1][u], t);
    		}
    		else Find_pre(Son[0][u], t);
    	}
    	void Find_suf(int u, int t)
    	{
    		if (!u) return;
    		if (t < Val[u])
    		{
    			suf = u;
    			Find_suf(Son[0][u], t);
    		}
    		else Find_suf(Son[1][u], t);
    	}
    }Treap;
    int sqz()
    {
    	int n = read();
    	while (n--)
    	{
    		int op = read(), x = read();
    		switch (op)
    		{
    			case 1: Treap.Insert(root, x); break;
    			case 2: Treap.Delete(root, x); break;
    			case 3: printf("%d
    ", Treap.Find_rank(root, x)); break;
    			case 4: printf("%d
    ", Treap.Find_num(root, x)); break;
    			case 5: pre = 0, Treap.Find_pre(root, x); printf("%d
    ", Treap.Val[pre]); break;
    			case 6: suf = 0, Treap.Find_suf(root, x); printf("%d
    ", Treap.Val[suf]); break;
    		}
    	}
    }
    
  • 相关阅读:
    "Emgu.CV.CvInvoke”的类型初始值设定项引发异常 解决办法
    EmguCV(OpenCV)实现高效显示视频(YUV)叠加包括汉字
    yuv420p转为emgucv的图像格式Emgu.CV.Image<Bgr, Byte>
    Emgu.CV/opencv 绘图 线面文字包括中文
    5.9 HTML5 新增表单控件 ---不是特别重要
    5.8 HTML5新结构标签
    5.8 HTML5新结构标签 ---不是特别重要
    5.7 CSS浏览器前缀
    5.6 CSS3 animation动画
    5.5 CSS3 transform变换
  • 原文地址:https://www.cnblogs.com/WizardCowboy/p/7643644.html
Copyright © 2011-2022 走看看