题目传送门:CF
题目大意:
给定一个(n imes m)的表格((nleqslant 20,mleqslant 10^5))
每个表格中有(0/1),每次可以将一行或者一列翻转,问表格中最少有多少个1
首先(n)很小,状压是肯定躲不掉了……
然后我们发现,只要确定了翻转一些行,那么答案必然唯一确定(每列取(min{Num_0,Num_1}))
于是我们设(f[i])表示翻转行状态为(i)的答案
统计答案的时候,相同状态的列是可以合并的,所以我们设(C[i])表示列状态为(i)的列个数
然后我们假定当前列状态为(i),翻转的行状态为(S),那么翻转后状态就为(ioplus S)
然后对于每一列的任意状态(i),我们都知道其答案,为(min{Num_0,Num_1}),预处理为(g[i])
那么答案即为(f[k]=sumlimits_{ioplus j=k}C[i] imes g[j])
FWT优化xor卷积即可
/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
#define lowbit(x) ((x)&-(x))
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
inline int frd(){
int x=0,f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline int read(){
int x=0,f=1; char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<3)+(x<<1)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
const int N=1e5;
void FWT(ll *a,int n,int type){
for (int i=2;i<=n;i<<=1){
for (int j=0;j<n;j+=i){
for (int k=0;k<i>>1;k++){
ll x=a[j+k],y=a[j+k+(i>>1)];
a[j+k]=x+y,a[j+k+(i>>1)]=x-y;
if (!~type) a[j+k]>>=1,a[j+k+(i>>1)]>>=1;
}
}
}
}
ll f[(1<<20)+10],A[(1<<20)+10],B[(1<<20)+10];
char s[25][N+10];
int main(){
int n=read(),m=read();ll Ans=inf;
for (int i=0;i<n;i++) scanf("%s",s[i]);
for (int j=0;j<m;j++){
int sta=0;
for (int i=0;i<n;i++) sta=(sta<<1)+s[i][j]-'0';
A[sta]++;
}
for (int i=1;i<1<<n;i++) B[i]=B[i-lowbit(i)]+1;
for (int i=0;i<1<<n;i++) B[i]=min(B[i],n-B[i]);
FWT(A,1<<n,1),FWT(B,1<<n,1);
for (int i=0;i<1<<n;i++) f[i]=A[i]*B[i];
FWT(f,1<<n,-1);
for (int i=0;i<1<<n;i++) Ans=min(Ans,f[i]);
printf("%lld
",Ans);
return 0;
}