zoukankan      html  css  js  c++  java
  • [HDU6343]Graph Theory Homework

    Description
    There is a complete graph containing (n) vertices, the weight of the (i)-th vertex is (w_i).
    The length of edge between vertex (i) and (j) ((i≠j)) is (lfloor sqrt{|w_i-w_j|} floor).
    Calculate the length of the shortest path from 1 to (n).

    Input
    The first line of the input contains an integer (T (1leqslant Tleqslant 10)) denoting the number of test cases.
    Each test case starts with an integer (n (1leqslant nleqslant 10^5)) denoting the number of vertices in the graph.
    The second line contains n integers, the (i)-th integer denotes (w_i (1leqslant w_ileqslant 10^5)).

    Output
    For each test case, print an integer denoting the length of the shortest path from 1 to (n).

    Sample Input

    1
    3
    1 3 5
    

    Sample Output

    2
    

    根据(lfloorsqrt{a} floor+lfloorsqrt{b} floorgeqslantlfloorsqrt{a+b} floor,(a,bin))可得,对于任意两点(i,j)而言,必然有(lfloorsqrt{|w_i-w_k|} floor+lfloorsqrt{|w_k-w_j|} floorgeqslantlfloorsqrt{|w_i-w_k|+|w_k-w_j|} floorgeqslantlfloorsqrt{w_i-w_j} floor),故我们直接计算(1sim n)即可

    现对(lfloorsqrt{a} floor+lfloorsqrt{b} floorgeqslantlfloorsqrt{a+b} floor)进行证明

    (m^2leqslant aleqslant (m+1)^2)(n^2leqslant bleqslant (n+1)^2),则有(lfloorsqrt{a} floor=m,lfloorsqrt{b} floor=n)

    (m=0)(n=0),则(a=0)(b=0),此时命题显然成立

    欲证 (m+ngeqslantlfloorsqrt{a+b} floor)

    则只需证 (m+n+1geqslant sqrt{a+b})

    则只需证 (m+n+1geqslantsqrt{(m+1)^2+(n+1)^2})

    则只需证 (m^2+n^2+1+2m+2n+2mngeqslant m^2+1+2m+n^2+1+2n)

    则只需证 (2nm>1),这在(n,m>0)时是显然成立的,故得证

    /*program from Wolfycz*/
    #include<map>
    #include<cmath>
    #include<cstdio>
    #include<vector>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define Fi first
    #define Se second
    #define ll_inf 1e18
    #define MK make_pair
    #define sqr(x) ((x)*(x))
    #define pii pair<int,int>
    #define int_inf 0x7f7f7f7f
    using namespace std;
    typedef long long ll;
    typedef unsigned int ui;
    typedef unsigned long long ull;
    inline char gc(){
    	static char buf[1000000],*p1=buf,*p2=buf;
    	return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
    }
    template<typename T>inline T frd(T x){
    	int f=1; char ch=gc();
    	for (;ch<'0'||ch>'9';ch=gc())	if (ch=='-')    f=-1;
    	for (;ch>='0'&&ch<='9';ch=gc())	x=(x<<1)+(x<<3)+ch-'0';
    	return x*f;
    }
    template<typename T>inline T read(T x){
    	int f=1; char ch=getchar();
    	for (;ch<'0'||ch>'9';ch=getchar())	if (ch=='-')	f=-1;
    	for (;ch>='0'&&ch<='9';ch=getchar())	x=(x<<1)+(x<<3)+ch-'0';
    	return x*f;
    }
    inline void print(int x){
    	if (x<0)	putchar('-'),x=-x;
    	if (x>9)	print(x/10);
    	putchar(x%10+'0');
    }
    const int N=1e5;
    int A[N+10];
    int main(){
    //	freopen(".in","r",stdin);
    //	freopen(".out","w",stdout);
    	int T=read(0);
    	while (T--){
    		int n=read(0);
    		for (int i=1;i<=n;i++)	A[i]=read(0);
    		printf("%d
    ",(int)trunc(sqrt(abs(A[n]-A[1]))));
    	}
    	return 0;
    }
    
    作者:Wolfycz
    本文版权归作者和博客园共有,欢迎转载,但必须在文章开头注明原文出处,否则保留追究法律责任的权利
  • 相关阅读:
    IntelliJ IDEA 如何在同一个窗口创建多个项目--超详细教程
    spring IOC原理
    java工作错误总结
    java跬步积累
    简单易懂设计模式——简单工厂模式
    Argo 项目入驻 CNCF,一文解析 Kubernetes 原生工作流
    电子书下载 | 超实用!阿里售后专家的 K8s 问题排查案例合集
    在生产环境中,阿里云如何构建高性能云原生容器网络?(含 PPT 下载)
    SIG Cloud Provider Alibaba 网研会第 2 期顺利召开 | 云原生生态周报 Vol. 46
    提问赠书 | 我们请了 7 位云原生专家,等你来问
  • 原文地址:https://www.cnblogs.com/Wolfycz/p/14930740.html
Copyright © 2011-2022 走看看