题目传送门:https://codeforces.com/problemset/problem/18/C
题目大意:
给你一串长度为(A)的序列,问有多少种分割方法,使得两段数字和相同
记前缀和(Pre),记后缀和(Suf),求所有(Pre_i=Suf_{i+1})的点即可
/*program from Wolfycz*/
#include<map>
#include<cmath>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define Fi first
#define Se second
#define ll_inf 1e18
#define MK make_pair
#define sqr(x) ((x)*(x))
#define pii pair<int,int>
#define int_inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
template<typename T>inline T frd(T x){
int f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
template<typename T>inline T read(T x){
int f=1; char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
const int N=1e5;
int Pre[N+10],Suf[N+10],A[N+10];
int main(){
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
int n=read(0),Ans=0;
for (int i=1;i<=n;i++) A[i]=read(0);
for (int i=1;i<=n;i++) Pre[i]=Pre[i-1]+A[i];
for (int i=n;i>=1;i--) Suf[i]=Suf[i+1]+A[i];
for (int i=1;i<n;i++) Ans+=(Pre[i]==Suf[i+1]);
printf("%d
",Ans);
return 0;
}