题目传送门:https://codeforces.com/problemset/problem/803/C
题目大意:
给定两个数(n,k),求(k)个数(a_1<a_2<...<a_k),满足(sumlimits_{i=1}^ka_i=n),且使得(gcdlimits_{i=1}^k{a_i})最大
假定(alpha=gcdlimits_{i=1}^k{a_i}),则有(a_i=alpha imes r_i),因为(sumlimits_{i=1}^kr_igeqslant frac{k(k+1)}{2}),故(alphaleqslant frac{2n}{k(k+1)})
显然(n=alphasumlimits_{i=1}^kr_i),故(alpha)应为(n)的约数,且最大不超过(frac{2n}{k(k+1)})
故我们可以(O(sqrt n))找到最大的(alpha),然后按照(r_i=i(1leqslant ileqslant k-1)),(r_k=frac{n}{alpha}-sumlimits_{i=1}^{k-1}r_i)构造(a_i)即可
/*program from Wolfycz*/
#include<map>
#include<cmath>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define Fi first
#define Se second
#define ll_inf 1e18
#define MK make_pair
#define sqr(x) ((x)*(x))
#define pii pair<int,int>
#define int_inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline char gc(){
static char buf[1000000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,1000000,stdin),p1==p2)?EOF:*p1++;
}
template<typename T>inline T frd(T x){
int f=1; char ch=gc();
for (;ch<'0'||ch>'9';ch=gc()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=gc()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
template<typename T>inline T read(T x){
int f=1; char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x<0) putchar('-'),x=-x;
if (x>9) print(x/10);
putchar(x%10+'0');
}
vector<ll>vec;
int main(){
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
ll n=read(0ll),k=read(0ll);
if (k>sqrt(n<<1)){
printf("-1
");
return 0;
}
ll m=(k+1)*k/2,limit=n/m,All=0;
if (!limit){
printf("-1
");
return 0;
}
for (ll i=1;i<=sqrt(n);i++){
if (n%i) continue;
vec.push_back(i);
if (n/i!=i) vec.push_back(n/i);
}
sort(vec.begin(),vec.end());
vector<ll>::iterator it=upper_bound(vec.begin(),vec.end(),limit);
it--;
for (int i=1;i<k;i++) printf("%lld ",*it*i),All+=*it*i;
printf("%lld
",n-All);
return 0;
}