zoukankan      html  css  js  c++  java
  • [SDOI2010]粟粟的书架

    Description
    幸福幼儿园 B29 班的粟粟是一个聪明机灵、乖巧可爱的小朋友,她的爱好是画画和读书,尤其喜欢 Thomas H. Cormen 的文章。粟粟家中有一个 R行C 列的巨型书架,书架的每一个位置都摆有一本书,上数第i 行、左数第j 列摆放的书有Pi,j页厚。粟粟每天除了读书之外,还有一件必不可少的工作就是摘苹果,她每天必须摘取一个指定的苹果。粟粟家果树上的苹果有的高、有的低,但无论如何凭粟粟自己的个头都难以摘到。不过她发现, 如果在脚下放上几本书,就可以够着苹果;她同时注意到,对于第 i 天指定的那个苹果,只要她脚下放置书的总页数之和不低于Hi,就一定能够摘到。由于书架内的书过多,父母担心粟粟一天内就把所有书看完而耽误了上幼儿园,于是每天只允许粟粟在一个特定区域内拿书。这个区域是一个矩形,第 i 天给定区域的左上角是上数第 x1i行的左数第 y1i本书,右下角是上数第 x2i行的左数第y2i本书。换句话说,粟粟在这一天,只能在这﹙x2i-x1i+1﹚×﹙y2i-y1i+1﹚本书中挑选若干本垫在脚下,摘取苹果。粟粟每次取书时都能及时放回原位,并且她的书架不会再撤下书目或换上新书,摘苹果的任务会一直持续 M天。给出每本书籍的页数和每天的区域限制及采摘要求,请你告诉粟粟,她每天至少拿取多少本书,就可以摘到当天指定的苹果。

    Input
    第一行是三个正整数R,C,M。
    接下来是一个R行C列的矩阵,从上到下、从左向右依次给出了每本书的页数Pi,j。
    接下来M行,第i行给出正整数x1i,y1i,x2i,y2i,Hi,表示第i天的指定区域是﹙x1i,y1i﹚与﹙x2i,y2i﹚间的矩形,总页数之和要求不低于Hi。
    保证1≤x1i≤x2i≤R,1≤y1i≤y2i≤C。

    Output
    有M行,第i 行回答粟粟在第 i 天时为摘到苹果至少需要 拿取多少本书。如果即使取走所有书都无法摘到苹果,则在该行输出“Poor QLW” (不含引号)。

    Sample Input 1
    5 5 7
    14 15 9 26 53
    58 9 7 9 32
    38 46 26 43 38
    32 7 9 50 28
    8 41 9 7 17
    1 2 5 3 139
    3 1 5 5 399
    3 3 4 5 91
    4 1 4 1 33
    1 3 5 4 185
    3 3 4 3 23
    3 1 3 3 108

    Sample Output 1
    6
    15
    2
    Poor QLW
    9
    1
    3

    Sample Input 2
    1 10 7
    14 15 9 26 53 58 9 7 9 32
    1 2 1 9 170
    1 2 1 9 171
    1 5 1 7 115
    1 1 1 10 228
    1 4 1 4 45704571
    1 1 1 1 1
    1 7 1 8 16

    Sample Output 2
    6
    7
    3
    10
    Poor QLW
    1
    2

    HINT
    对于 10%的数据,满足 R, C≤10
    对于 20%的数据,满足 R, C≤40
    对于 50%的数据,满足 R, C≤200,M≤200,000
    另有 50%的数据,满足 R=1,C≤500,000,M≤20,000
    对于 100%的数据,满足 1≤Pi,j≤1,000,1≤Hi≤2,000,000,000


    首先这不是一道题,这是两道题。。。

    前50%的数据,R,C≤200,可以用(sum[i][j][k])代表(1,1)到(i,j)位置的矩阵中大于k的数之和,(cnt[i][j][k])则记录大于k的数的个数,每次询问的时候二分出一个最小的满足要求的k,判断是否可行,但是要注意最后的k不一定要取满

    后面50%的数据是一个序列,用主席树求总和和大于h的数的个数,查找的时候和右子树的sum比较,类似于Kth查询,如果往左子树走就加上右子树的点的个数,并且查找的值减去右子树的sum,最后在叶子节点判断是否要取满即可

    详细见代码

    /*program from Wolfycz*/
    #include<cmath>
    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    #define inf 0x7f7f7f7f
    using namespace std;
    typedef long long ll;
    typedef unsigned int ui;
    typedef unsigned long long ull;
    inline int read(){
    	int x=0,f=1;char ch=getchar();
    	for (;ch<'0'||ch>'9';ch=getchar())	if (ch=='-')    f=-1;
    	for (;ch>='0'&&ch<='9';ch=getchar())	x=(x<<1)+(x<<3)+ch-'0';
    	return x*f;
    }
    inline void print(int x){
    	if (x>=10)	print(x/10);
    	putchar(x%10+'0');
    }
    const int N=5e5,M=1e7,K=2e2,V=1e3;
    int R,C,m;
    namespace Prefix_solve{
    	int sum[K+10][K+10][V+10],cnt[K+10][K+10][V+10];
    	int get_sum(int x1,int y1,int x2,int y2,int k){
    		return sum[x2][y2][k]+sum[x1-1][y1-1][k]-sum[x2][y1-1][k]-sum[x1-1][y2][k];
    	}
    	int get_cnt(int x1,int y1,int x2,int y2,int k){
    		return cnt[x2][y2][k]+cnt[x1-1][y1-1][k]-cnt[x2][y1-1][k]-cnt[x1-1][y2][k];
    	}
    	void main(){
    		for (int i=1;i<=R;i++){
    			for (int j=1;j<=C;j++){
    				int x=read();
    				for (int k=1;k<=V;k++){//预处理
    					sum[i][j][k]=sum[i-1][j][k]+sum[i][j-1][k]-sum[i-1][j-1][k]+(x>=k?x:0);
    					cnt[i][j][k]=cnt[i-1][j][k]+cnt[i][j-1][k]-cnt[i-1][j-1][k]+(x>=k?1:0);
    				}
    				
    			}
    		}
    		for (int i=1;i<=m;i++){
    			int a=read(),b=read(),c=read(),d=read(),h=read();
    			int l=1,r=V,res=-1;
    			while (l<=r){//二分出一个最小的k,后面去询问答案
    				int mid=(l+r)>>1;
    				if (get_sum(a,b,c,d,mid)>=h)	res=mid,l=mid+1;
    				else	r=mid-1;
    			}
    			if (res==-1){//无解的情况
    				printf("Poor QLW
    ");
    				continue;
    			}
    			//因为不一定要取满,因此把多余的部分减掉
    			printf("%d
    ",get_cnt(a,b,c,d,res)-(get_sum(a,b,c,d,res)-h)/res);
    		}
    	}
    };
    namespace Chairman_solve{
    	int root[N+10],val[N+10],list[N+10];
    	struct Segment{
    		int ls[M+10],rs[M+10],cnt[M+10],sum[M+10],tot;
    		void insert(int &k,int p,int l,int r,int v){
    			cnt[k=++tot]=cnt[p]+1;
    			ls[k]=ls[p],rs[k]=rs[p];
    			sum[k]=sum[p]+list[v];
    			if (l==r)	return;
    			int mid=(l+r)>>1;
    			if (v<=mid)	insert(ls[k],ls[p],l,mid,v);
    			else	insert(rs[k],rs[p],mid+1,r,v);
    		}
    		int Query(int k,int p,int l,int r,int v){//v表示需要凑出的大小
    			if (l==r)	return (v-1)/list[l]+1;//不一定要取满
    			int mid=(l+r)>>1;
    			//从右子树判断,越大越好,和Kth查询略有不同
    			if (v<=sum[rs[p]]-sum[rs[k]])	return Query(rs[k],rs[p],mid+1,r,v);
    			else	return cnt[rs[p]]-cnt[rs[k]]+Query(ls[k],ls[p],l,mid,v-(sum[rs[p]]-sum[rs[k]]));
    			//查询左边的时候把右边的数目全部加起来
    		}
    	}Tree;
    	void main(){
    		for (int i=1;i<=C;i++)	list[i]=val[i]=read();
    		sort(list+1,list+1+C);
    		int T=unique(list+1,list+1+C)-list-1;
    		for (int i=1;i<=C;i++)	val[i]=lower_bound(list+1,list+1+T,val[i])-list;
    		for (int i=1;i<=C;i++)	Tree.insert(root[i],root[i-1],1,T,val[i]);
    		//离散化后建树
    		for (int i=1;i<=m;i++){
    			int a=read(),b=read(),c=read(),d=read(),h=read();
    			//整个区间加起来都不满足,就无解;否则直接去找
    			if (Tree.sum[root[d]]-Tree.sum[root[b-1]]<h)	printf("Poor QLW
    ");
    			else	printf("%d
    ",Tree.Query(root[b-1],root[d],1,T,h));
    		}
    	}
    };
    int main(){
    	R=read(),C=read(),m=read();
    	if (R==1){
    		Chairman_solve::main();//主席树
    		return 0;
    	}
    	Prefix_solve::main();//二维前缀和
    	return 0;
    }
    
  • 相关阅读:
    python中map()函数
    Numpy学习—np.random.randn()、np.random.rand()和np.random.randint()
    列表、集合和字典推导式
    pandas iloc函数
    python -- 类中self到底有什么用?再续
    python apply()函数
    python 中关于self到底有什么用续
    python——类中的self到底有什么作用
    类初始化的参数可以是任何形式
    python高级(元类、自定义元类)
  • 原文地址:https://www.cnblogs.com/Wolfycz/p/9592179.html
Copyright © 2011-2022 走看看