zoukankan      html  css  js  c++  java
  • POJ1423 计算出n的阶乘的位数大数问题[Stirling公式]

    Big Number
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 21661   Accepted: 6888

    Description

    In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.

    Input

    Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 <= m <= 10^7 on each line.

    Output

    The output contains the number of digits in the factorial of the integers appearing in the input.

    Sample Input

    2
    10
    20

    Sample Output

    7
    19

    Source

     
    题意:计算出n的阶乘的位数
     
     1 #include <stdio.h>
     2 #include <math.h>
     3 
     4 int n;
     5 const double e = 2.7182818284590452354, pi = 3.141592653589793239;
     6 
     7 double f( int a )
     8 {
     9     return log10( sqrt( 2 * pi * a ) ) + a * log10( a / e );
    10 }
    11 
    12 int main()
    13 {
    14     int cas, ans;
    15     double i, s;
    16     
    17     scanf( "%d", &cas );
    18     
    19     while( cas-- )
    20     {
    21         scanf( "%d", &n );
    22         if( n < 100000 )
    23         {
    24             for( s=0, i=1; i<=n; i++ )
    25                 s += log10( i );
    26         }
    27         else s = f( n );
    28         ans = (int)s;
    29         if( ans <= s )
    30             ans++;
    31         
    32         printf( "%d/n", ans );
    33     }    
    34     return 0;
    35 }
     
    注:
    Stirling公式介绍:
    lim(n→∞) (n/e)^n*√(2πn) / n! = 1
    也就是说当n很大的时候,n!与√(2πn) * (n/e) ^ n的值十分接近
    这就是Stirling公式.
     
    公式的证明
    令a(n)=n! / [ n^(n+1/2) * e^(-n) ]
     
      则a(n) / a(n+1) = (n+1)^(n+3/2) / [ n^(n+1/2) * (n+1) * e ]
     
      =(n+1)^(n+1/2) / [ n^(n+1/2) * e]
     
      =(1+1/n)^n * (1+1/n)^1/2 *1/e
     
      当n→∞时,(1+1/n)^n→e,(1+1/n)^1/2→1
     
      即lim(n→∞) a(n)/a(n+1)=1
     
      所以lim(n→∞)a(n) 存在
     
      设A=lim(n→∞)a(n)
     
      A=lim(n→∞)n! / [ n^(n+1/2) * e^(-n) ]
     
      利用Wallis公式,π/2 = lim(n→∞)[ (2n)!! / (2n-1)!! ]^2 / (2n+1)
     
      π/2 = lim(n→∞)[ (2n)!! / (2n-1)!! ]^2 / (2n+1)
     
      =lim(n→∞)[ (2n)!! * (2n)!! / (2n)! ]^2 / (2n+1)
     
      =lim(n→∞) 2^(4n) [ (n!)^2 / (2n)! ]^2 / (2n+1)
     
      =lim(n→∞) 2^(4n) [ (A * n^(n+1/2) * e^(-n) )^2 / (A * (2n)^(2n+1/2) * e^(-2n) )]^2 / (2n+1)
     
      =lim(n→∞) 2^(4n) [ 2^(-2n-1/2) * A * √n ]^2 / (2n+1)
     
      =lim(n→∞) 2^(4n) * A^2 * 2^(-4n-1) * n/(2n+1)
     
      =A^2 / 4
     
      所以A=√(2π)
        
         lim(n→∞)n! / [ n^(n+1/2) * e^(-n) ] = √(2π)
        
         即lim(n→∞) √(2πn) * n^n * e^(-n) / n! = 1
     
    公式的意义:
     Stirling公式的意义在于:当n足够大之后n!计算起来十分困难,虽然有很多关于n!的不等式,但并不能很好的对阶乘结果进行估计,尤其是n很大之后,误差将会非常大.但利用Stirling公式可以将阶乘转化成幂函数,使得阶乘的结果得以更好的估计.而且n越大,估计得就越准确.






                If you have any questions about this article, welcome to leave a message on the message board.



    Brad(Bowen) Xu
    E-Mail : maxxbw1992@gmail.com


  • 相关阅读:
    一个诡异的COOKIE问题
    PHP与JAVA构造函数的区别
    PHP获取上个月最后一天的一个容易忽略的问题
    jquery屏幕滚动计算事件总结
    Javascript 代理模式模拟一个文件同步功能
    Javascript实现HashTable类
    Javacript实现字典结构
    Javascript正则对象方法与字符串正则方法总结
    一个app,多个入口图标,activity-alias实现多程序入口并显示指定view完成
    javascript「篱式」条件判断
  • 原文地址:https://www.cnblogs.com/XBWer/p/2513823.html
Copyright © 2011-2022 走看看