zoukankan      html  css  js  c++  java
  • HDOJ1054 Strategic Game[求最小顶点覆盖无向图]

    Strategic Game

    Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 2892    Accepted Submission(s): 1206


    Problem Description
    Bob enjoys playing computer games, especially strategic games, but sometimes he cannot find the solution fast enough and then he is very sad. Now he has the following problem. He must defend a medieval city, the roads of which form a tree. He has to put the minimum number of soldiers on the nodes so that they can observe all the edges. Can you help him?

    Your program should find the minimum number of soldiers that Bob has to put for a given tree.

    The input file contains several data sets in text format. Each data set represents a tree with the following description:

    the number of nodes
    the description of each node in the following format
    node_identifier:(number_of_roads) node_identifier1 node_identifier2 ... node_identifier
    or
    node_identifier:(0)

    The node identifiers are integer numbers between 0 and n-1, for n nodes (0 < n <= 1500). Every edge appears only once in the input data.

    For example for the tree:



    the solution is one soldier ( at the node 1).

    The output should be printed on the standard output. For each given input data set, print one integer number in a single line that gives the result (the minimum number of soldiers). An example is given in the following table:
     
    Sample Input
    4 0:(1) 1 1:(2) 2 3 2:(0) 3:(0) 5 3:(3) 1 4 2 1:(1) 0 2:(0) 0:(0) 4:(0)
     
    Sample Output
    1 2
     
    Source
     
    Recommend
    JGShining
     
     
     
     
     
    邻接矩阵,枚举时可以省去很多不必要的点。
    第一组测试数据:

    code:
     1 #include <iostream>   
     2 #include <iomanip>   
     3 #include <fstream>   
     4 #include <sstream>   
     5 #include <algorithm>   
     6 #include <string>   
     7 #include <set>   
     8 #include <utility>   
     9 #include <queue>   
    10 #include <stack>   
    11 #include <list>   
    12 #include <vector>   
    13 #include <cstdio>   
    14 #include <cstdlib>   
    15 #include <cstring>   
    16 #include <cmath>   
    17 #include <ctime>   
    18 #include <ctype.h> 
    19 using namespace std;
    20 
    21 #define MAXN 1510
    22 
    23 int map[MAXN][MAXN];
    24 bool vst[MAXN];
    25 int path[MAXN];
    26 int cnt[MAXN];
    27 int n;
    28 
    29 bool dfs(int v)
    30 {
    31     int i;
    32     for(i=0;i<cnt[v];i++)
    33     {
    34         if(!vst[map[v][i]])
    35         {
    36             vst[map[v][i]]=1;
    37             if(path[map[v][i]]==-1||dfs(path[map[v][i]]))
    38             {
    39                 path[map[v][i]]=v;
    40                 return true;
    41             }
    42         }
    43     }
    44     return false;
    45 }
    46 
    47 int hungary()
    48 {
    49     int ans=0;
    50     memset(path,-1,sizeof(path));
    51     for(int i=0;i<n;i++)
    52     {
    53         memset(vst,0,sizeof(vst));
    54         if(dfs(i))
    55             ans++;
    56     }
    57     return ans/2;
    58 }
    59 
    60 int main()
    61 {
    62     int a;
    63     int k;
    64     while(~scanf("%d",&n))
    65     {
    66         memset(map,0,sizeof(map));
    67         memset(cnt,0,sizeof(cnt));
    68         for(int i=0;i<n;i++)
    69         {
    70             scanf("%d:(%d)",&a,&k);
    71             while(k--)
    72             {
    73                 int b;
    74                 scanf("%d",&b);
    75                 map[a][cnt[a]++]=b;
    76                 map[b][cnt[b]++]=a;
    77             }
    78         }
    79         printf("%d\n",hungary());
    80     }
    81     return 0;
    82 }

    再复习一遍:

    对于任意图:

    |最小边覆盖|+|最大匹配|=|V|

    二分图的最大匹配=最小点覆盖数

    对于二分图:

    以下数值等价.

    最大匹配

    最小点覆盖

    |V|-最大独立集(二分图or有向无环图)

    |V|-最小边覆盖数

    |V|-最小路径覆盖数(有向无环图)

    |V|-最小路径覆盖数/2(无向图)

    (上面括号里有有向无环图的,均是将一个点拆成两个点连边匹配)

    由于任意图的那几个几乎用不到于是这里只贴二分图的定义

    最小点覆盖(Konig定理):理解为点覆盖边,即用最小的点覆盖所有的边。(若一条边的其中一个端点被选用,这条边就被覆盖了)

    最大独立集:求一个最大的点集,里面的点不存在任何的边相连。

    最小边覆盖:理解为边覆盖点,用最少的边把图中的点全部覆盖。

    最小路径覆盖:用最少的路径把图中的所有点覆盖。

     

     另外:最大独立集与最小覆盖集互补。

    需要明确的是:
    “图的顶点数目等于顶点覆盖数与最大独立集合的大小之和”对于所有无向图有效
    “最大匹配数=最小顶点覆盖数”只针对二部图有效

  • 相关阅读:
    ArrayList源码分析_JDK1.8.0_191
    LinkedList源码分析_JDK1.8.0_191
    HashMap源码分析_JDK1.8.0_191
    生产者消费者模型Java实现
    INT整型最小值取负还是本身的问题
    字节跳动面试题
    go sqlx操作数据库问题
    go gin框架调用cmd运行python脚本问题
    Android视频播放不能使用自研播放器
    mac python版本错误问题以及pip版本错误(anacanda)
  • 原文地址:https://www.cnblogs.com/XBWer/p/2640421.html
Copyright © 2011-2022 走看看