zoukankan      html  css  js  c++  java
  • daima

    # -*- coding: utf-8 -*-
    import theano
    import theano.tensor as T
    import numpy as np
    from sklearn import datasets
    import matplotlib.pyplot as plt
    import time
    #定义数据类型
    
    np.random.seed(0)
    train_X, train_y = datasets.make_moons(300, noise=0.20)
    train_X = train_X.astype(np.float32)
    train_y = train_y.astype(np.int32)
    num_example=len(train_X)
    
    #设置参数
    nn_input_dim=2 #输入神经元个数
    nn_output_dim=2 #输出神经元个数
    nn_hdim=100
    #梯度下降参数
    epsilon=0.01 #learning rate
    reg_lambda=0.01 #正则化长度
    
    
    #设置共享变量
    
    w1=theano.shared(np.random.randn(nn_input_dim,nn_hdim),name="W1")
    b1=theano.shared(np.zeros(nn_hdim),name="b1")
    w2=theano.shared(np.random.randn(nn_hdim,nn_output_dim),name="W2")
    b2=theano.shared(np.zeros(nn_output_dim),name="b2")
    
    #前馈算法
    X=T.matrix('X')  #double类型的矩阵
    y=T.lvector('y') #int64类型的向量
    z1=X.dot(w1)+b1
    a1=T.tanh(z1)
    z2=a1.dot(w2)+b2
    y_hat=T.nnet.softmax(z2)
    #正则化项
    loss_reg=1./num_example * reg_lambda/2 * (T.sum(T.square(w1))+T.sum(T.square(w2)))
    loss=T.nnet.categorical_crossentropy(y_hat,y).mean()+loss_reg
    #预测结果
    prediction=T.argmax(y_hat,axis=1)
    
    forword_prop=theano.function([X],y_hat)
    calculate_loss=theano.function([X,y],loss)
    predict=theano.function([X],prediction)
    
    
    #求导
    dw2=T.grad(loss,w2)
    db2=T.grad(loss,b2)
    dw1=T.grad(loss,w1)
    db1=T.grad(loss,b1)
    
    #更新值
    gradient_step=theano.function(
        [X,y],
        updates=(
            (w2,w2-epsilon*dw2),
            (b2,b2-epsilon*db2),
            (w1,w1-epsilon*dw1),
            (b1,b1-epsilon*db1)
    
        )
    )
    
    def build_model(num_passes=20000,print_loss=False):
    
        w1.set_value(np.random.randn(nn_input_dim, nn_hdim) / np.sqrt(nn_input_dim))
        b1.set_value(np.zeros(nn_hdim))
        w2.set_value(np.random.randn(nn_hdim, nn_output_dim) / np.sqrt(nn_hdim))
        b2.set_value(np.zeros(nn_output_dim))
    
        for i in xrange(0,num_passes):
            gradient_step(train_X,train_y)
            if print_loss and i%1000==0:
                print "Loss after iteration %i: %f" %(i,calculate_loss(train_X,train_y))
    def accuracy_rate():
        predict_result=predict(train_X)
        count=0;
        for i in range(len(predict_result)):
            realResult=train_y[i]
            if(realResult==predict_result[i]):
                count+=1
        print "the correct rate is :%f" %(float(count)/len(predict_result))
    
    def plot_decision_boundary(pred_func):
        # Set min and max values and give it some padding
        x_min, x_max = train_X[:, 0].min() - .5, train_X[:, 0].max() + .5
        y_min, y_max = train_X[:, 1].min() - .5, train_X[:, 1].max() + .5
        h = 0.01
        # Generate a grid of points with distance h between them
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
        # Predict the function value for the whole gid
        Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        # Plot the contour and training examples
        plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
        plt.scatter(train_X[:, 0], train_X[:, 1], c=train_y, cmap=plt.cm.Spectral)
        plt.show()
    
    
    build_model(print_loss=True)
    accuracy_rate()
    # # plot_decision_boundary(lambda x: predict(x))
    # # plt.title("Decision Boundary for hidden layer size 3")
    # -*- coding: utf-8 -*-
    import theano
    import theano.tensor as T
    import numpy as np
    from sklearn import datasets
    import matplotlib.pyplot as plt
    import time
    #定义数据类型
    
    np.random.seed(0)
    train_X, train_y = datasets.make_moons(5000, noise=0.20)
    train_y_onehot = np.eye(2)[train_y]
    
    
    
    #设置参数
    num_example=len(train_X)
    nn_input_dim=2 #输入神经元个数
    nn_output_dim=2 #输出神经元个数
    nn_hdim=1000
    #梯度下降参数
    epsilon=np.float32(0.01) #learning rate
    reg_lambda=np.float32(0.01) #正则化长度
    
    #设置共享变量
    # GPU NOTE: Conversion to float32 to store them on the GPU!
    X = theano.shared(train_X.astype('float32')) # initialized on the GPU
    y = theano.shared(train_y_onehot.astype('float32'))
    # GPU NOTE: Conversion to float32 to store them on the GPU!
    w1 = theano.shared(np.random.randn(nn_input_dim, nn_hdim).astype('float32'), name='W1')
    b1 = theano.shared(np.zeros(nn_hdim).astype('float32'), name='b1')
    w2 = theano.shared(np.random.randn(nn_hdim, nn_output_dim).astype('float32'), name='W2')
    b2 = theano.shared(np.zeros(nn_output_dim).astype('float32'), name='b2')
    
    #前馈算法
    z1=X.dot(w1)+b1
    a1=T.tanh(z1)
    z2=a1.dot(w2)+b2
    y_hat=T.nnet.softmax(z2)
    #正则化项
    loss_reg=1./num_example * reg_lambda/2 * (T.sum(T.square(w1))+T.sum(T.square(w2)))
    loss=T.nnet.categorical_crossentropy(y_hat,y).mean()+loss_reg
    #预测结果
    prediction=T.argmax(y_hat,axis=1)
    
    forword_prop=theano.function([],y_hat)
    calculate_loss=theano.function([],loss)
    predict=theano.function([],prediction)
    
    
    #求导
    dw2=T.grad(loss,w2)
    db2=T.grad(loss,b2)
    dw1=T.grad(loss,w1)
    db1=T.grad(loss,b1)
    
    #更新值
    gradient_step=theano.function(
        [],
        updates=(
            (w2,w2-epsilon*dw2),
            (b2,b2-epsilon*db2),
            (w1,w1-epsilon*dw1),
            (b1,b1-epsilon*db1)
    
        )
    )
    
    def build_model(num_passes=20000,print_loss=False):
    
        w1.set_value((np.random.randn(nn_input_dim, nn_hdim) / np.sqrt(nn_input_dim)).astype('float32'))
        b1.set_value(np.zeros(nn_hdim).astype('float32'))
        w2.set_value((np.random.randn(nn_hdim, nn_output_dim) / np.sqrt(nn_hdim)).astype('float32'))
        b2.set_value(np.zeros(nn_output_dim).astype('float32'))
    
        for i in xrange(0,num_passes):
            start=time.time()
            gradient_step()
            end=time.time()
            # print "time require:"
            # print(end-start)
            if print_loss and i%1000==0:
                print "Loss after iteration %i: %f" %(i,calculate_loss())
    
    def accuracy_rate():
        predict_result=predict()
        count=0;
        for i in range(len(predict_result)):
            realResult=train_y[i]
            if(realResult==predict_result[i]):
                count+=1
        print "count"
        print count
        print "the correct rate is :%f" %(float(count)/len(predict_result))
    
    def plot_decision_boundary(pred_func):
        # Set min and max values and give it some padding
        x_min, x_max = train_X[:, 0].min() - .5, train_X[:, 0].max() + .5
        y_min, y_max = train_X[:, 1].min() - .5, train_X[:, 1].max() + .5
        h = 0.01
        # Generate a grid of points with distance h between them
        xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
        # Predict the function value for the whole gid
        Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
        Z = Z.reshape(xx.shape)
        # Plot the contour and training examples
        plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
        plt.scatter(train_X[:, 0], train_X[:, 1], c=train_y, cmap=plt.cm.Spectral)
        plt.show()
    
    
    build_model(print_loss=True)
    accuracy_rate()
    
    
    # plot_decision_boundary(lambda x: predict(x))
    # plt.title("Decision Boundary for hidden layer size 3")
  • 相关阅读:
    Hibernate工作原理
    Java jar包查询下载方法
    http状态码(HTTP Status Code)
    Android Broadcast Receiver (广播接收者)
    Android ViewPager组件
    Android Activity属性
    Android XML Drawable
    Android 样式布局
    Android Activity的LaunchMode四种模式
    Android Layout布局
  • 原文地址:https://www.cnblogs.com/XDJjy/p/5595833.html
Copyright © 2011-2022 走看看