zoukankan      html  css  js  c++  java
  • 【LeetCode】329. 矩阵中的最长递增路径(深入理解DFS)

    题目链接

    https://leetcode-cn.com/problems/longest-increasing-path-in-a-matrix/

    题目描述

    给定一个整数矩阵,找出最长递增路径的长度。

    对于每个单元格,你可以往上,下,左,右四个方向移动。 你不能在对角线方向上移动或移动到边界外(即不允许环绕)。

    示例 1:
    输入: nums = 
    [
      [9,9,4],
      [6,6,8],
      [2,1,1]
    ] 
    输出: 4 
    解释: 最长递增路径为 [1, 2, 6, 9]。
    
    示例
    2: 输入: nums = [ [3,4,5], [3,2,6], [2,2,1] ] 输出: 4 解释: 最长递增路径是 [3, 4, 5, 6]。注意不允许在对角线方向上移动。

    解题思路

    DFS+记忆化搜索

    这题很容易想到利用DFS进行解决,但是本题单单采用DFS是没办法解决的,必须加上记忆化搜索。那什么是记忆化搜索呢?看看以下的问题,你就能明白什么情况要加上记忆化搜索

    Q:我们之前做过连通块的题目,该题目要求你算出一共有多少个连通块,如果将题目更改一下,问你如何求出面积最大的连通块呢?

    A:因为题目中我们肯定是需要对比多个连通块之间的面积,倘若你用一个变量去存储面积最大的连通块,该值也会因为DFS递归函数弹栈而改变,所以我们必须利用其他数据结构对值进行记录,这就是记忆化搜索,一般都是采用和地图规模一样大的二维数组。

    弄清了DFS+记忆化搜索的概念,回到本题:

    本题类似,每个元素都有4种状态可以选择,上下左右,然后套用递归模板即可。

    注意:再写递归函数的时候,我们必须要理解这个递归函数表达的意义,否则很容易绕进去,以AC代码C++为例,f(int i,int j)该递归函数的意思表示:到matrix[i][j]这个元素的递增路径长度,所以也能理解f(aa,bb)+1中+1的含义:到matrix[aa][bb]的长度为f(aa,bb),则到下一个满足条件的元素的递增路径长度当然是在此基础上+1.

    AC代码

    C++版本

    class Solution {
    public:
        vector<vector<int>> dp;
        vector<vector<int>> data;
        int dx[4] = {-1, 1, 0, 0};
        int dy[4] = {0, 0, -1, 1};
        int ans = 0;
        int n, m;
    
        int f(int i, int j) {
            // cout << i << " " << j << endl;
         //递归必须要有出口和剪枝
       //if就是递归的剪枝 if (dp[i][j]) return dp[i][j]; else { dp[i][j] = 1; for (int k = 0; k < 4; k ++) { int aa = i + dx[k], bb = j + dy[k]; if (aa < 0 || aa >= n || bb < 0 || bb >= m) continue; if (data[aa][bb] > data[i][j]) dp[i][j] = max(dp[i][j], f(aa, bb) + 1);//当递归返回值不是void的时候,通常递归表达式都需要做+或者其他运算,例如本题f(aa,bb)+1 } ans = max(ans, dp[i][j]); cout<<"i:"<<i<<",j:"<<j<<endl; //方便理解递归 cout<<dp[i][j]<<endl; return dp[i][j]; } } int longestIncreasingPath(vector<vector<int>>& matrix) { n = matrix.size(); data = matrix; if (n == 0) return 0; m = matrix[0].size(); dp = vector<vector<int>>(n, vector<int>(m, 0)); for (int i = 0; i < n; i ++) { for (int j = 0; j < m; j ++) { if (dp[i][j] == 0) f(i, j); ans = max(ans, dp[i][j]); } } return ans; } };

    以示例2为例子,在源代码中添加两个cout语句,方便理解递归。

    示例 2:
    输入: nums = 
    [
      [3,4,5],
      [3,2,6],
      [2,2,1]
    ] 
    输出: 4

    Java版本

    class Solution {
        int[][] dir = {{0,1},{0,-1},{1,0},{-1,0}};
        int ans = 0;
         
        public int dfs(int[][] matrix,int x,int y,int[][] dp){
            //递归必须要有出口和剪枝
            if(dp[x][y] != 0) return dp[x][y];
            else
            {
                dp[x][y] = 1;
                for(int i = 0; i < 4; i++){
                    int xx = x + dir[i][0];
                    int yy = y + dir[i][1];
                    if(test(matrix,xx,yy) == false) continue;
                    if(matrix[xx][yy] > matrix[x][y]){
                        dp[x][y] = Math.max(dp[x][y], dfs(matrix,xx,yy,dp) + 1);
                    }
                }
                ans = Math.max(ans,dp[x][y]);
                return dp[x][y];
            }
        }
        
        public boolean test(int[][] matrix,int x,int y){
            if(x < 0 || x >= matrix.length) return false;
            if(y < 0 || y >= matrix[0].length) return false;
            return true;
        }
        
        public int longestIncreasingPath(int[][] matrix) {
            if(matrix.length == 0 || matrix[0].length == 0) return 0;
            int[][] dp = new int[matrix.length][matrix[0].length];
            for(int i = 0; i < matrix.length; i++){
                for(int j = 0; j < matrix[0].length; j++){
                    dfs(matrix,i,j,dp);
                }
            }
            return ans;
        }
    }
     
  • 相关阅读:
    C++ 构造函数初始化列表
    虚函数
    thread 学习
    vim学习笔记
    Python重载比较运算符
    python使用插入法实现链表反转
    【好文转】Python中yield的理解与使用
    【转】Python中自定义可迭代对象
    linux安装python3.6.6和新建虚拟环境
    【转】Python 并行分布式框架 Celery
  • 原文地址:https://www.cnblogs.com/XDU-Lakers/p/13381627.html
Copyright © 2011-2022 走看看