Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Ultra-QuickSort produces the output
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5 9 1 0 5 4 3 1 2 3 0
Sample Output
6 0
题意 :多组输入,输入n,n==0结束,接着输入n个数。把输入的数排好序需要几步。
思路:由于输入的数不是从1开始公差为1的递增序列,先用两个快排转换一下,代入树状数组就ok了!
ac代码:
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
long long d1[5000000];
int n;
struct node //g存数,h存下标
{
int g,h;
} s[5000000];
int cmp(struct node a,struct node b) //控制排序的方向从大到小
{
return a.g>b.g;
}
int cmp1(struct node a,struct node b) //控制排序方向从小到大
{
return a.h<b.h;
}
int lowbit(int x)
{
return x&(-x);
}
long long sum(int x) //树状数组求和,这题是求x前面有多少个数,因为把所有数转换成公差为1的递增序列,求出的和就是答案
{
long long res=0;
while(x>0)
{
res+=d1[x];
x-=lowbit(x);
}
return res;
}
void add(int x) //更新树状数组
{
while(x<=n)
{
d1[x]++;
x+=lowbit(x);
}
}
int main()
{
int a,b,i,j;
long long num;
while(scanf("%d",&n)!=EOF)
{
if(n==0)
break;
num=0;
memset(d1,0,sizeof(d1));
for(i=1; i<=n; i++)
{
scanf("%d",&s[i].g);
s[i].h=i;
}
sort(s+1,s+n+1,cmp); //按g值的大小排序
for(i=1; i<=n; i++)
s[i].g=i;
sort(s+1,s+n+1,cmp1); //按h排序 ,就是原来的下标
for(i=1;i<=n;i++)
{
num+=sum(s[i].g); //把这个数前面有的数的个数相加,就是答案
add(s[i].g);
}
printf("%lld
",num);
}