zoukankan      html  css  js  c++  java
  • P4841 [集训队作业2013]城市规划

    生成函数板子题

    套用结论

    无向图是无向联通图的不交并,且带编号,计算时可以直接相乘,那么

    [widehat{A} (x) = e^{widehat{B}(x)} ]

    [widehat B (x)= ln(widehat A (x) ]

    #include <bits/stdc++.h>
    using namespace std;
    #define rg register
    #define gc getchar
    #define rep(i, a, b) for(int i = a; i <= b; ++i)
    #define per(i, a, b) for(int i = a; i >= b; --i)
    #define I inline
    const int N = 6e5 + 5, mod = 1004535809;
    I int read(){
    	rg char ch = gc();
    	rg int f = 0;
    	rg long long x = 0;
    	while(!isdigit(ch)) f |= (ch == '-'), ch = gc();
    	while(isdigit(ch)) x = ((x << 1) + (x << 3) + (ch ^ 48)) % mod, ch = gc();
    	return f ? mod - x : x;
    }
    I int ksm(int a, long long b){
    	int ans = 1;
    	while(b){ if(b & 1) ans = 1ll * a * ans % mod; b >>= 1; a = 1ll * a * a % mod; }
    	return ans;
    }
    int G = 3, Gn = ksm(G, mod - 2);
    int f[N], g[N], n, k;
    I void fwt_or(int *f, int lim, int flag){
    	for(int l = 2; l <= lim; l <<= 1)
    		for(int m = l >> 1, j = 0; j < lim; j += l)
    			for(int i = j; i < j + m; ++i)
    				(f[j + m] += flag * f[j]) %= mod;
    }
    I void fwt_and(int *f, int lim, int flag){
    	for(int l = 2; l <= lim; l <<= 1)
    		for(int m = l >> 1, j = 0; j < lim; j += l)
    			for(int i = j; i < j + m; ++i)
    				(f[j] += flag * f[j + m]) %= mod;
    }
    const int inv2 = ksm(2, mod - 2);
    I void fwt_xor(int *f, int lim, int flag){
    	for(int l = 2; l <= lim; l <<= 1)
    		for(int m = l >> 1, j = 0; j < lim; j += l)
    			for(int i = j; i < j + m; ++i){
    				int x = f[i], y = f[i + m];
    				f[i] = (x + y) % mod; f[i + m] = (x + mod - y) % mod;
    				if(flag == -1){
    					f[i] = 1ll * f[i] * inv2 % mod; f[i + m] = 1ll * f[i] * inv2 % mod;
    				}
    			}
    }
    I int get_phi(int x){
    	int len = sqrt(x);
    	int res = 1;
    	rep(i, 2, len){
    		if(!(x % i)){
    			x /= i;
    			res = 1ll * res * (i - 1) % mod;
    			while(!(x % i)) x /= i, res = 1ll * res * i % mod;	
    		}
    	}
    	if(x != 1) res = 1ll * res * (x - 1) % mod;
    	return res;
    }
    I int find_root(int x){
    	int phi = get_phi(x), p = phi;
    	int len = sqrt(phi);
    	static int s[N], cnt;
    	cnt = 0;
    	rep(i, 2, len){
    		if(!(p % i)){
    			p /= i;
    			s[++cnt] = i;
    			while(!(p % i)) p /= i;
    		}
    	}
    	if(p != 1) s[++cnt] = p;
    	rep(i, 1, cnt) cout << s[i] << " "; cout << endl;
    	cout << phi << endl;
    	rep(i, 2, mod - 1){
    		int flag = 0;
    		rep(j, 1, cnt) if(ksm(i, phi / s[j]) == 1){ flag = 1; break; }
    		if(!flag) return i;
    	}
    }
    int fac[N], ifac[N];
    I void get_fac(int n){
    	fac[0] = ifac[0] = 1;
    	rep(i, 1, n){
    		fac[i] = 1ll * fac[i - 1] * i % mod;
    		ifac[i] = 1ll * ifac[i - 1] * fac[i] % mod;
    	}
    	int inv = ksm(ifac[n], mod - 2);
    	per(i, n, 1){
    		ifac[i] = 1ll * ifac[i - 1] * inv % mod;
    		inv = 1ll * fac[i] * inv % mod;
    	}
    }
    struct FFT{
    	int A[N], B[N], c[N], b2[N], bb[N], ib2[N], sa[N], rev[N];
    	I void NTT(int *a, int lim, int len, int flag){
    		rep(i, 1, lim - 1) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len - 1));
    		rep(i, 1, lim - 1) if(rev[i] > i) swap(a[i], a[rev[i]]);
    		for(int l = 2; l <= lim; l <<= 1){
    			const int m = l >> 1, Gi = ksm(flag == 1 ? G : Gn, (mod + 1) / l);
    			for(int j = 0; j < lim; j += l){
    				int g = 1;
    				for(int i = j; i < j + m; ++i, g = 1ll * g * Gi % mod){
    					int x = a[i], y = 1ll * g * a[i + m] % mod;
    					a[i] = (x + y) % mod;
    					a[i + m] = (x + mod - y) % mod;
    				}
    			}
    		}
    	}
    	I void mul(int *a, int *b, int na, int nb, int *c){
    		int lim = 1, len = 0;
    		while(lim <= na + nb) lim <<= 1, ++len;
    		memcpy(A, a, (na + 1) * sizeof(int)); memcpy(B, b, (nb + 1) * sizeof(int));
    		fill(A + na + 1, A + lim, 0); fill(B + nb + 1, B + lim, 0);
    		NTT(A, lim, len, 1); NTT(B, lim, len, 1);
    		rep(i, 0, lim - 1) A[i] = 1ll * A[i] * B[i] % mod;
    		NTT(A, lim, len, -1);
    		const int inv = ksm(lim, mod - 2);
    		rep(i, 0, na + nb) c[i] = 1ll * A[i] * inv % mod;
    		fill(c + na + nb + 1, c + lim, 0);
    	}
    	I void ni_ab(int *a, int *b, int n){
    		int lim = 1;
    		while(lim <= n) lim <<= 1;
    		b[0] = ksm(a[0], mod - 2);
    		for(int xmod = 1, nlen = 2; xmod < lim; xmod <<= 1, ++nlen){
    			int nlim = xmod << 2;
    			memcpy(B, b, xmod * sizeof(int)); memcpy(A, a, (xmod << 1) * sizeof(int));
    			fill(B + xmod, B + nlim, 0); fill(A + (xmod << 1), A + nlim, 0);
    			NTT(A, nlim, nlen, 1); NTT(B, nlim, nlen, 1);
    			rep(i, 0, nlim - 1) A[i] = ((B[i] << 1) % mod + mod - 1ll * A[i] * B[i] % mod * B[i] % mod) % mod;
    			NTT(A, nlim, nlen, -1);
    			const int inv = ksm(nlim, mod - 2);
    			rep(i, 0, (xmod << 1) - 1) b[i] = 1ll * A[i] * inv % mod;
    		}
    		fill(b + n + 1, b + lim, 0);
    	}
    	I void ln(int *a, int *b, int n){//bb b2
    		int lim = 1, len = 0;
    		while(lim <= n) lim <<= 1, ++len;
    		rep(i, 0, n - 1) bb[i] = 1ll * (i + 1) * a[i + 1] % mod;
    		ni_ab(a, b2, n);
    		mul(bb, b2, n - 1, n, b);
    		per(i, n, 1) b[i] = 1ll * b[i - 1] * ksm(i, mod - 2) % mod; b[0] = 0;
    	}
    	I void sqrt(int *a, int *b, int n){//bb ib2 b2
    		int lim = 1, len = 0;
    		while(lim <= n) lim <<= 1, ++len;
    		fill(b, b + lim, 0); fill(b2, b2 + lim, 0);
    		b[0] = 1;
    		for(int xmod = 1; xmod < lim; xmod <<= 1){
    			rep(i, 0, xmod - 1) b2[i] = (b[i] << 1) % mod; ni_ab(b2, ib2, (xmod << 1) - 1);
    			mul(b, b, xmod - 1, xmod - 1, bb);
    			rep(i, 0, (xmod << 1) - 1) bb[i] = (bb[i] + a[i]) % mod;
    			mul(bb, ib2, (xmod << 1) - 1, (xmod << 1) - 1, b);
    		}
    	}
    	I void exp(int *a, int *b, int n){//ib2 bb b2 c
    		int lim = 1; while(lim <= n) lim <<= 1;
    		fill(b, b + lim, 0);
    		b[0] = 1;
    		for(int xmod = 1; xmod < lim; xmod <<= 1){
    			ln(b, ib2, (xmod << 1) - 1); //ib2 = ln(b);
    			rep(i, 0, (xmod << 1) - 1) c[i] = (a[i] + mod - ib2[i]) % mod;
    			c[0] = (c[0] + 1) % mod;
    			mul(b, c, (xmod << 1) - 1, (xmod << 1) - 1, b);
    		}
    		fill(b + n + 1, b + lim, 0);
    	}
    	I void pow(int *a, int *b, int n, int _k = k){
    		int lim = 1; while(lim <= n) lim <<= 1;
    		ln(a, sa, n);
    		rep(i, 0, n) sa[i] = 1ll * sa[i] * _k % mod;
    		exp(sa, b, n);
    	}
    }T;
    signed main(){
    	n = read();
    	get_fac(n);
    	f[0] = 1; f[1] = 1;
    	rep(i, 2, n) f[i] = 1ll * ksm(2, 1ll * i * (i - 1) / 2) * ifac[i] % mod;
    	T.ln(f, g, n);
    	printf("%d
    ", 1ll * g[n] * fac[n] % mod); 
    	return 0;
    }
    
  • 相关阅读:
    升级Nginx1.14.1以上版本
    MaxScale中间件部署数据库读写分离
    php文件锁解决少量并发问题
    使用mysql悲观锁解决并发问题
    配置和查看composer镜像
    PHP常用的 五种设计模式及应用场景
    全球免费公共 DNS 解析服务器 IP 地址列表推荐 (解决无法上网/加速/防劫持)
    九种跨域方式实现原理
    Hadoop中RPC协议小例子报错java.lang.reflect.UndeclaredThrowableException解决方法
    DataNode启动不成功——java.net.BindException: Port in use: localhost:0 Caused by: java.net.BindException: Cannot assign requested address解决办法
  • 原文地址:https://www.cnblogs.com/XiaoVsun/p/13056336.html
Copyright © 2011-2022 走看看