zoukankan      html  css  js  c++  java
  • 常用函数

    对任意实数 (x)

    [x - 1 < lfloor x floor le x le lceil x ceil < x + 1 ]

    对任意整数 (n)

    [lceil n / 2 ceil + lfloor n / 2 floor = n ]

    对任意实数 (x ge 0) 和整数 (a, b > 0)

    [leftlceil dfrac{lceil x / a ceil}b ight ceil = leftlceil dfrac x {ab} ight ceil ]

    [leftlfloor dfrac{lfloor x / a floor}b ight floor = leftlfloor dfrac x {ab} ight floor ]

    [leftlceil dfrac a b ight ceil le dfrac {a + (b - 1)} b ]

    [leftlfloor dfrac a b ight floor ge dfrac {a - (b - 1)} b ]

    对于 (e)

    [e^x = sum_{i = 1}^{infty} frac {x^i} {i!} ]

    由此知

    [e^x ge 1 + x ]

    (|x| le 1) 时,我们有近似估计

    [1 + x le e^x le 1 + x + x^2 ]

    对于 (x o 0)

    [lim_{n o infty} (1 + frac x n) = e^x ]

    对数

    [a^{log_b c} = c^{log_b a} ]

    (两边取 (ln) 证明)

    (|x| < 1)

    [ln(1 + x) = sum_{i = 1} ^ infty (-1)^{i - 1} frac{x ^ i} i ]

    对于 (x > -1)

    [frac x {1 + x} le ln(1 + x) le x ]

    [lg(n!) = Theta(nlgn) ]

    斐波那契

    [F_0 = 0, F_1 = 1 ]

    [F_i = F_{i - 1} + F_{i - 2} ]

    黄金分割率 (phi)(x^2 = x + 1) 的两个根

    [phi = frac{1 + sqrt 5} 2 = 1.61803... ]

    [hat{phi} = frac{1 - sqrt 5} 2 = -0.61803... ]

    [F_i = frac{phi^i - hat{phi}^i} {sqrt 5} ]

  • 相关阅读:
    玩转JavaScript module pattern精髓
    玩转Javascript 给JS写测试
    Feature Toggle JUnit
    状态机模式实战
    Java静态类
    Guava增强for循环
    Spring Security使用心得
    听个响
    Geoserver2.16.2初步使用
    GeoWebCache1.10.5发布arcgis瓦片服务
  • 原文地址:https://www.cnblogs.com/XiaoVsun/p/14993480.html
Copyright © 2011-2022 走看看