zoukankan      html  css  js  c++  java
  • 【题解】魔法树 Magic Tree [CEOI2019] [CF1193B] [Loj3166]

    【题解】魔法树 Magic Tree [CEOI2019] [CF1193B] [Loj3166]

    传送门:魔法树 ( ext{Magic Tree}) ( ext{[CEOI2019]}) ( ext{[CF1193B]}) ( ext{[Loj3166]})

    【题目描述】

    给出一颗 (n) 个节点的树(根为 (1)),每个节点 (i) 会在第 (d_i) 天时放出量为 (w_i) 的妹汁。在每一天 (j) 您可以砍掉树上的任意一些边,若当天与节点 (1) 不再联通的点的 (d_i) 恰好等于 (j),您可以获得这些妹汁。

    求总共最多能收获多少妹汁。

    【分析】

    先考虑暴力 (dp),设 (f(x,j)) 表示在时间 (j) 时以 (x) 为根的子树可获得的最大妹汁量,则有:

    (f(x,j)=max{f(x,j-1),g(x,j)}),其中 (g(x,j)=w(x)*[j=d(x)]+sum_{toin son(x)}f(to,j))

    复杂度 (O(nk)),可以过 ( ext{Subtask 1,4,5}),有 (34pts)

    用个小 (trick) 优化转移。

    注意到 (f) 实际上是 (g) 的前缀最大值,给每个点开个 (map) 记录 (j)(f(x,j)-f(x,k)) ((k<j,f(x,k) eq f(x,j)))(相邻两个不同前缀最大值的差),那坨子树累加直接启发式合并。

    每次给 (g(x,d(x))) 加上 (w(x)) 后都会使从 (d(x)) 开始的连续一段发生改变,先 ( ext{upperbound}) 找到 (d(x)) 位置后面的第一个指针,然后依次往后移动并删去被更新掉的位置,无法继续更新时就停止(利用差分的良好性质)。

    【Code】

    #include<algorithm>
    #include<cstring>
    #include<cstdio>
    #include<map>
    #define LL long long
    #define Re register int
    #define IT map<int,LL>::iterator
    using namespace std;
    const int N=1e5+3;
    int n,m,x,y,o,T,K,t[N],v[N],head[N];
    struct QAQ{int to,next;}a[N];
    inline void add(Re x,Re y){a[++o].to=y,a[o].next=head[x],head[x]=o;}
    inline void in(Re &x){
        int f=0;x=0;char c=getchar();
        while(c<'0'||c>'9')f|=c=='-',c=getchar();
        while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
        x=f?-x:x;
    }
    struct Sakura1{//暴力
        LL ans,dp[N][23];
        inline void dfs(Re x){
            for(Re i=head[x],to;i;i=a[i].next){
                dfs(to=a[i].to);
                for(Re j=0;j<=K;++j)dp[x][j]+=dp[to][j];
            }
            dp[x][t[x]]+=v[x];
            for(Re j=t[x]+1;j<=K;++j)dp[x][j]=max(dp[x][j],dp[x][j-1]);
        }
        inline void sakura(){dfs(1),printf("%lld
    ",dp[1][K]);}
    }T1;
    struct Sakura2{//正解
        int id[N];LL ans;map<int,LL>s[N];
        inline void dfs(Re x){
            id[x]=x;
            for(Re i=head[x],to;i;i=a[i].next){
                dfs(to=a[i].to);
                if(s[id[x]].size()<s[id[to]].size())swap(id[x],id[to]);
                for(IT it=s[id[to]].begin();it!=s[id[to]].end();++it)
                    s[id[x]][it->first]+=it->second;
            }
            s[id[x]][t[x]]+=v[x];LL dlt=v[x];IT it=s[id[x]].upper_bound(t[x]),tmp;
            while(it!=s[id[x]].end())
                if(dlt>=it->second)dlt-=it->second,tmp=it++,s[id[x]].erase(tmp);//f(x,d(x))更优,删掉这个点
                else{it->second-=dlt;break;}//这个点更优,结束枚举
        }
        inline void sakura(){
            dfs(1);
            for(IT it=s[id[1]].begin();it!=s[id[1]].end();++it)ans+=it->second;//差分回收
            printf("%lld
    ",ans);
        }
    }T2;
    int main(){
    //    freopen("magic.in","r",stdin);
    //    freopen("magic.out","w",stdout);
        in(n),in(T),in(K),m=n-1;
        for(Re i=2;i<=n;++i)in(x),add(x,i);
        while(T--)in(x),in(t[x]),in(v[x]);
    //    if(K<=20)T1.sakura();else
        T2.sakura();
    }
    
  • 相关阅读:
    LuoguP1016 旅行家的预算 (贪心)
    LuoguP2254 [NOI2005]瑰丽华尔兹 (单调队列优化DP)(用记忆化过了。。。)
    LuoguP2876 [USACO07JAN]解决问题Problem Solving (区间DP)(未完成)
    Luogu3275 [SCOI2011]糖果 (差分约束)
    Luogu1993 小K的农场 (差分约束)
    Luogu4427 [BJOI2018]求和 (树上差分)
    LuoguP1516 青蛙的约会 (Exgcd)
    POJ3903Stock Exchange (LIS)
    LuoguP1020 导弹拦截 (LIS)
    线性筛
  • 原文地址:https://www.cnblogs.com/Xing-Ling/p/12931590.html
Copyright © 2011-2022 走看看