zoukankan      html  css  js  c++  java
  • An interesting combinational problem

    A question of details in the solution at the end of this post of the question is asked by me at MSE

    Nowadays, I learnt from Liu Ben a question asked in the interview of ENS. 

    Assume $m,n$ are two coprime odd numbers, consider the interval $[0,mn]$. We cut the interval by $m,2m,ldots,(n-1)m$ and $n, 2n,ldots, (m-1)n$ into $m+n-1$ pieces of small intervals. And we color them from left to right by black-and-white periodically and black first. The question is to show $$( extrm{the length of black})-( extrm{the length of white})=1$$

    For example, if $m=3,n=5$, $$egin{array}{c*{31}}0 &&&&&& 3 &&&&&& 6 &&&&&& 9 &&&&&& 12 &&&&&& 15 \ mid & lacksquare && lacksquare && lacksquare &mid & square && square & mid  & lacksquare & mid  & square&& square&& square &mid & lacksquare &mid & square&& square&mid & lacksquare&& lacksquare&& lacksquare & mid  \ 0 &&&&&&&&&& 5 &&&&&&&&&& 10 &&&&&&&&&& 15end{array} $$The length of black is $8$ and the length of white is $7$.  

    The problem seems to be elementary at the first sight. But after a period of thinking, one find it is hard to deal with. Here is Liu Ben's Original answer, I fulfill details to read more easily, 

    The number of cuts before $x$ is $lfloor frac{x-1}{n} floor+lfloor frac{x-1}{m} floor$, so $$(-1)^{lfloor frac{x-1}{n} floor+lfloor frac{x-1}{m} floor}=egin{cases} 1 & extrm{$[x-1,x]$ is colored by black }\ -1 &  extrm{$[x-1,x]$ is colored by white } end{cases}$$Thus it is equivlent to show that $sum_{x=0}^{mn-1} (-1)^{lfloor frac{x}{n} floor+lfloor frac{x}{m} floor}=1$, and we have know that $(-1)^{m+n}=1, (-1)^0=1$, so  it is equivlent to show that $$sum_{x=1}^{mn} (-1)^{lfloor frac{x}{n} floor+lfloor frac{x}{m} floor}=1$$Now we need some identity to expand the expression $(-1)^{lfloor frac{x}{n} floor}$,

    $$egin{array}{rll} (-1)^{lfloor x floor}& = (-1)^{lfloor x floor}-1+1 \ & =1+ 2left(sum_{n=0}^{lfloor x floor}(-1)^{n} ight)= 1+ 2left(sum_{nleq x}(-1)^{n} ight)end{array}$$

    So 

    $$egin{array}{rll}&quad  sum_{x=1}^{mn} (-1)^{lfloor frac{x}{n} floor+lfloor frac{x}{m} floor} \  & =sum_{x=1}^{mn} left(1+2left(sum_{kleq x/n} (-1)^k ight) ight)left(1+2left(sum_{kleq x/m} (-1)^k ight) ight) \ & = mn+2underbrace{sum_{x=1}^{mn}sum_{kleq x/n} (-1)^k}_{:=A}+2underbrace{sum_{x=1}^{mn}sum_{kleq x/m} (-1)^k}_{:=B}+4sum_{x=1}^{mn}left(sum_{kleq x/n} (-1)^k ight)left(sum_{hleq x/m} (-1)^h ight)end{array}$$

    Firstly, we calculate $A$, 

    $$egin{array}{rll}A & =sum_{x=1}^{mn}sum_{kleq x/n} (-1)^k \ & = sum_{k=1}^m #{xgeq nk: x=1,ldots,mn}(-1)^k  \ & =sum_{k=0}^m n(m-k)(-1)^k \ & = nsum_{k=0}^m k(-1)^k\& =-nfrac{m+1}{2}end{array}$$

    Similarly, $B=-mfrac{n+1}{2}$, therefore it remains to show 

    $$sum_{x=1}^{mn}left(sum_{kleq x/n} (-1)^k ight)left(sum_{hleq x/m} (-1)^h ight)=frac{(m+1)(n+1)}{4}$$

    Let's compute ! 

    $$egin{array}{rll}sum_{x=1}^{mn}left(sum_{kleq x/n} (-1)^k ight)left(sum_{hleq x/m} (-1)^h ight) & =sum_{k=0}^{m}sum_{h=0}^n#{xgeq max (nk,mh), x=1,ldots,mn}(-1)^{k+h}\ & =sum_{k=0}^{m}sum_{h=0}^n(mn- max(nk,mh))(-1)^{k+h} \ & =sum_{k=0}^{m}sum_{h=0}^n max(nk,mh)(-1)^{k+h} \ & =sum_{k=0}^{m}sum_{h=0}^n frac{1}{2}(nk+mh+left|nk-mh ight|)(-1)^{k+h}  \ &= frac{1}{2}sum_{k=0}^{m}sum_{h=0}^n left|nk-mh ight|(-1)^{k+h} \ & = frac{mn}{2}sum_{k=0}^msum_{h=0}^nleft|frac{k}{m}-frac{h}{n} ight|(-1)^{k+h}end{array}$$

    So it reduces to show $sum_{k=0}^msum_{h=0}^nleft|frac{k}{m}-frac{h}{n} ight|(-1)^{k+h}=0$. We need some tools to calculate, consider the function $f$ with peroid $2$ and $f(x)=|x|$ for $xin [-1,1]$, then the Fourier series of $f$ is $$f=sum_{ell in mathbb{Z}} a_{ell} mathrm{e}^{frac{2pi i ell x}{2}}qquad a_{ell} =frac{1}{2}int_{-1}^1 |x| mathrm{e}^{frac{2pi i ell x}{2}} extrm{d}x=egin{cases}frac{1}{2} & n=0 \ -frac{2}{pi^2 n^2} & n extrm{is odd} \ 0 & n eq 0 extrm{is even}end{cases}$$

    In other word, we have 

    $$xin [-1,1]Rightarrow frac{1}{4}-frac{|x|}{2}=sum_{ell extrm{odd}} frac{1}{pi^2 ell ^2}mathrm{e}^{2pi i ell x}$$

    Now, continuous

    $$egin{array}{rll} frac{mn}{2}sum_{k=0}^msum_{h=0}^nleft|frac{k}{m}-frac{h}{n} ight|(-1)^{k+h} & = mn sum_{k=0}^msum_{h=0}^nfrac{left|frac{k}{m}-frac{h}{n} ight|}{2}(-1)^{k+h} \ & =mn sum_{k=0}^msum_{h=0}^nigg(frac{1}{4}-frac{left|frac{k}{m}-frac{h}{n} ight|(-1)^{k+h}}{2} igg) \ & = sum_{k=0}^m sum_{h=0}^n sum_{ell extrm{odd}} frac{1}{pi^2 ell ^2} mathrm{e}^{frac{2pi i}{2}cdot ell left(frac{k}{m}-frac{h}{n} ight)}  \  & =mnsum_{ell extrm{odd}} frac{1}{pi^2 ell^2 }left(sum_{k=0}^m (-1)^kmathrm{e}^{frac{2 pi i  ell k}{2 m }} ight)left(sum_{h=0}^n (-1)^hmathrm{e}^{-frac{2 pi i  ell h}{2 n }} ight)end{array}$$

    It reduces to the case of the summation of geometry series, we have 

    $$sum_{k=0}^m (-1)^kmathrm{e}^{frac{2 pi i  ell k}{2 m }}=egin{cases}-1& m mid ell \ -1+m & mmid ell end{cases}qquad sum_{h=0}^n (-1)^hmathrm{e}^{-frac{2 pi i  ell h}{2 n }} = egin{cases}-1& n mid ell \ -1+n & nmid ell end{cases}$$

    Now we can deduct the result, 

    $$egin{array}{rll} & quad mnsum_{ell extrm{odd}} frac{1}{pi^2 ell^2 }left(sum_{k=0}^m (-1)^kmathrm{e}^{frac{2 pi i  ell k}{2 m }} ight)left(sum_{h=0}^n (-1)^hmathrm{e}^{-frac{2 pi i  ell h}{2 n }} ight) \ & =mnsum_{ell extrm{odd}} frac{1}{pi^2 ell^2 } - mnsum_{egin{subarray}{l}ell extrm{odd}\ m|ell end{subarray}} frac{m}{pi^2 ell^2} - mnsum_{egin{subarray}{l}ell extrm{odd}\ n|ell end{subarray}} frac{n}{pi^2 ell^2} + mnsum_{egin{subarray}{l}ell extrm{odd}\ n|ell \ m|ell end{subarray}} frac{nm}{pi^2 ell^2} \ & = mnsum_{ell extrm{odd}} frac{1}{pi^2 ell^2 } - nsum_{egin{subarray}{l}ell extrm{odd}\ m|ell end{subarray}} frac{1}{pi^2 (ell/m)^2} - msum_{egin{subarray}{l}ell extrm{odd}\ n|ell end{subarray}} frac{1}{pi^2 (ell/n)^2} + sum_{egin{subarray}{l}ell extrm{odd}\ nmmid ell end{subarray}} frac{1}{pi^2 (ell/mn)^2} \ & =(m-1)(n-1) sum_{ell extrm{odd}} frac{1}{pi^2 ell^2 }  =frac{(m-1)(n-1)}{4}end{array}$$

    The proof is complete. $square$

    If we reflect the process above carefully, we will find that the trick of exponential sums is useful in the domain of combinatorics involving number theory. It is powerful but not too beutiful. The amazing point is that in the process of counting number, $pi$ can occur, even it will be cancelled finally. 

    Some days after, Liu Ben gives a new answer which uses Fourier analysis, it is more elegant than the above, and I fulfill details to read more easily, 

     Actually, as above it reduces to show $$int_0^{mn}(-1)^{lfloor frac{x}{n} floor+lfloor frac{x}{m} floor} extrm{d}x=int_0^{mn}(-1)^{lfloor frac{x}{n} floor}overline{(-1)^{lfloor frac{x}{m} floor}} extrm{d}x=1$$Conside $f(x)=(-1)^{lfloor x floor}$ as a function of period $2$, one can calculate its Fourier expansion$$f(x)=frac{2}{pi i}sum_{ell extrm{odd}}frac{1}{ell} mathrm{e}^{frac{2pi i ell x}{2}}$$So $$egin{array}{rll}int_0^{mn}(-1)^{lfloor frac{x}{n} floor}overline{(-1)^{lfloor frac{x}{m} floor}} extrm{d}x& =int_{0}^{mn}f(x/n)overline{f(x/m)} extrm{d}x \ & =mnint_0^1 f(ny)overline{f(my)} extrm{d}y \ & = frac{4 mn}{pi^2}sum_{egin{subarray}{l}r,s  extrm{odd} \ mr=nsend{subarray}}frac{1}{rs} \ & =  frac{4 mn}{pi^2}sum_{egin{subarray}{l}r,s  extrm{odd} \ r=tn,s=tmend{subarray}}frac{1}{rs} \ &  =frac{4}{pi^2}sum_{t extrm{odd}}frac{1}{t^2}=1end{array} $$The proof is complete. $square$

    To complete this post, I want to give my answer of this problem. I think this answer is the most ingenious one. This is a proof without words as following. 

    When I heared the problem, I had no papers and pen to use. After thinking over brokenly, I came up the answer above one day after. And one can easily find that in the case of one of $m,n$ is even, then the difference between black and white vanish, and when $m,n$ are odd generally, the difference is $(m,n)$. 

     

    Ackowlegement

    I want to thank Liu Ben for his nice presentation of question and answer. And congratulation to his addmision by ENS

     

    $square$
  • 相关阅读:
    阿里的面试官都喜欢问哪些问题?
    Spring AOP中的JDK和CGLib动态代理哪个效率更高?
    招聘季!送你21套经典面试题!助你一臂之力!
    Spring AOP中的JDK和CGLib动态代理哪个效率更高?
    为什么需要分布式配置中心?
    线上出故障了!我慌得一匹!教大家如何应对在线故障!
    阿里巴巴的26款超神Java开源项目!
    完了!生产事故!几百万消息在消息队列里积压了几个小时!
    十大经典排序算法(动图演示)
    用户画像学习笔记
  • 原文地址:https://www.cnblogs.com/XiongRuiMath/p/10356120.html
Copyright © 2011-2022 走看看