zoukankan      html  css  js  c++  java
  • Classic Morita Theory

    I want to write some short introduction of Morita theory, since it seems that not all books introduce this classic thing in the following easy and brief way.

    The quotient relation.

    We know the adjointness

    $$Hom_B^C(Y,Hom_A(X,Z))=Hom_A^C(Xotimes_BY,Z)=Hom_A^B(X,Hom^C(Y,Z)). $$

    There is other isomorphisms

    $$egin{array}{c}Hom_A(X,Y_B)otimes_B Z o Hom_A(X,Yotimes_B Z),\Xotimes_A Hom_B(Y_A,Z) o Hom_B(Hom^A(X,Y_A),Z). end{array}$$

    For the first map. When $X=A$, it is isomorphic trivially. When $X=A^n$, it is isomorphic trivially. When $X$ is f.g. projective, then as a summand of some $A^n$ it is isomorphic. When $X$ is f.pre. and $Z$ is flat, then it is isomorphic by five lemma.

    For the second map. When $X=A$, it is isomorphic trivially. When $X=A^n$, it is isomorphic trivially. When $X$ is f.g. projective, then as a summand of some $A^n$ it is isomorphic.When $X$ is f.pre. and $Z$ is injective, then it is isomorphic by five lemma.

    And the dual for right modules

    $$egin{array}{c}Xotimes_A Hom^B(Y,{}_{A}Z) o Hom^B(X,Zotimes_AY),\Hom^A(X_B,Y)otimes_B Z o Hom^A(Hom_B(X,Z),Y).end{array}$$

    Left and right adjoint functor of tensor. 

    For a $Pin B extrm{-}mathsf{mod} extrm{-} A$, and projective as $B$-module, we can consider $Q=Hom_B(P,B)$. Now

    $$Qotimes_B - = Hom_B(P,B)otimes_B -=Hom_B(P,-)$$

    is an adjoint of $Potimes_A - $.

    We can also consider $Q'=Hom^A(P,A)$, now

    $$egin{array}{rl}Hom_A(Q'otimes_B U, V) & = Hom_B(U,Hom_A(Q', V))\& = Hom_B(U,Hom_A(Hom^A(P,A),V))\& =Hom_B(U,Potimes_A Hom_A(A,V))\& = Hom_B(U,Potimes_A V). end{array}$$

    But we don't use it. 

    Equivalence $Rightarrow$ Projective generator.

    Assume $A extrm{-}mathsf{mod} cong B extrm{-}mathsf{mod}$. Consider the image of $A$ in $B extrm{-}mathsf{mod}$, say $P$. Then $P$ is a projective generator (any $Min B extrm{-}mathsf{mod}$ is a quotient of some $P^n$). Furthermore, $P$ is also f.g. since $Hom_B(P,-)$ commutes with direct sum. Now, $Hom_B(P,P)=Hom_A(A,A)=A^{op}$, so $Pin B extrm{-}mathsf{mod} extrm{-} A$. Then the functor $A extrm{-}mathsf{mod} o B extrm{-}mathsf{mod}$ is given by $Potimes_A-$.

    Since the quasi-equivalence is adjoint, and adjoint is unique, so $Qotimes-$ is the desired inverse, where$Q=Hom_B(P,B)$ or $Q=Hom^A(P,A)$ works (but they are isomorphic by uniqueness).

    Projective generators $Rightarrow$ Equivalence.

    Next, if we have a projective generator $P$ in $B extrm{-}mathsf{mod}$, denote $A=End_B(P,P)^{op}$, and consider $Q=Hom_B(P,B)$, then we have two maps

    $$Qotimes_B P=Hom_B(P,B)otimes_B P=Hom_B(P,P)= Aqquad : eta$$

    and

    $$epsilon: qquad Potimes_A Q=Potimes_B Hom_B(P,B) o B. $$

    Note that

    $$P=Potimes Acong  Potimes_A Qotimes_B P o Botimes P=P$$

    is identity, so $epsilonotimes P$ is an isomorphism, but because $P$ is projective generator, so $Potimes_AQotimes_B B o B$ is isomorphism. So $Potimes-$ and $Qotimes-$ induces equivalence.

    Morita context.

    We will say a four tuple $(A,B,P,Q)$ with $A,B$ algebras and $P,Q$ bimodules is a Morita context if

    $$epsilon: Potimes_A Q o Bqquad eta:A o Qotimes_B P$$

    are isomorphisms as bimodule, and satisfy the

    $$(Potimes eta)circ (epsilonotimes P)=operatorname{id}_p,qquad (etaotimes Q)circ (Qotimes epsilon)=operatorname{id}_Q. $$

    Of course, this defines an adjoint. So our discussion above shows that the equivalences between $A extrm{-}mathsf{mod}$ and $B extrm{-}mathsf{mod}$ are all from Morita type.

    Note that Morita context is symmetric, not only left modules but also right modules (even the bimodules)!As a result, $A extrm{-}mathsf{mod}cong B extrm{-}mathsf{mod} iff mathsf{mod} extrm{-} Acong mathsf{mod} extrm{-} B$.

    Then $P$ are generators of both sides. Because we can take some surjective $A^n ightarrow Q$, then $P^n=Potimes_AA^n ightarrow Potimes Qcong B$. So

    $$egin{array}{rl}Q & = Hom_A(A,Q) = Hom_A(Qotimes_B P,Q)=Hom_B(P,Potimes_A Q)\& =Hom_B(P,B). end{array}$$

    The same reason,

    $$egin{array}{rl}Q & = Hom^B(B,Q) = Hom^B(Potimes_A Q,Q)=Hom^A(Q,Qotimes_B P)\& = Hom^A(Q,A).end{array}$$

    And as algebras

    $$egin{array}{rl}End_B(P) & =Hom_B(P,P)=Hom_A(A,Qotimes P) =A^{op}\End^A(P) & =Hom^A(P,P)=Hom^B(B,Potimes Q) =B end{array}$$

  • 相关阅读:
    JVM性能调优监控工具jps、jstack、jmap、jhat、jstat、jinfo、jconsole使用详解
    Spark入Hbase的四种方式效率对比
    redis的三种集群方式
    记Springcloud Config Service整合gitlab一坑
    移动开发day2_css预处理器_flex布局
    移动开发day1_过渡_2d转换_3d立体
    3月26-3月27号
    3月24号
    3月25号
    3月23日
  • 原文地址:https://www.cnblogs.com/XiongRuiMath/p/12185510.html
Copyright © 2011-2022 走看看