zoukankan      html  css  js  c++  java
  • Geometry and Representation Seminar

    Announcement

    The main aim of this seminar is to read the last part of the book

    • Kirrilov Jr. Quiver representation and Quiver varieties. 

    As the organizor, I hope to cover more topics besides the book including. 

    Participants

    Liu. Lu. Ma. Wang. Wei. Xiong. 

    About the main text

    > The 9th chapter involves Symplectic Geomtry and Geometric Invariant Theory (GIT)

    > The 10th chapter defines Quiver varieties by GIT. 

    > The 11th is about Hilbert schemes, for which algebraic geomtry is required. 

    > The 12th is relative to the classification of singularities, so it also needs some algebraic geomtry. 

    > The 13th chapter will be easy if knowing some background of geometric representation theory. 

    Log 

    2020 Oct 25th Liu Geometric Invariant Theory (first half of Chapter 9)  
    2020 Nov 1st Xiong Symplectic Calculus (middle half of Chapter 9)

    TooMuchTypos

    2020 Nov 8th Xiong Symplectic Calculus (last half of Chapter 9)
    2020 Nov 15th Xiong Introduction to Springer Theory  slide

    The references for the Topics

    > Hilbert schemes of points over surface

    • Nakajima. Lectures on Hilbert schemes of points on surfaces
    • Nakajima. More lectures on Hilbert schemes of points on surfaces [arXiv]

    > Quiver representations

    • Kirrilov Jr. Quiver representation and Quiver varieties. 
    • Derksen, Weyman. An Introduction to Quiver Representations. 
    • Reineke. Moduli of representations of quivers [arXiv]

    Categorification

    > General

    • Mazorchuk. Lectures on Algebraic Categorification. 

    > Geometric realization of Hecke algebras

    • Chiss, Ginzburg. Representation theory and Complex Geometry. 
    • Lusztig, Bases in equivariant K-theory
    • Lusztig, Bases in equivariant K-theory II
    • Lusztig, Equivariant K-theory and representations of Hecke algebras
    • Lusztig, Kazhdan. Equivariant K-theory and representations of Hecke algebras II
    • Kazhdan and Lusztig, Proof of Delign–Langlands Conjecture.
    • Kazhdan and Lusztig. Representations of Coxeter groups and Hecke algebras. 
    • Kazhdan and Lusztig. Schubert varieties and Poincar´e duality. 

    > Geometric realization of Quantum groups

    • Lusztig. Quantum groups. 
    • Kashiwara, Saito. Geometric Construction of Crystal Bases [arXiv]
    • Varagnolo, Vasserot. Canonical bases and KLR-algebras. 

    > Geometric realization of Kac--Moody algebras

    • Kirrilov Jr. Quiver representation and Quiver varieties. 
    • Nakajima. Quiver varieties and Kac-Moody algebras. 
    • Nakajima. Quiver varieties and finite-dimensional representations of quantum affine algebras. 
    • Ginzburg. Lectures on Nakajima varieties. [arXiv]

    Geometric Foundations 

    > Intersection homology and perverse sheaves

    • Goresky, MacPherson. Intersection homology I. [pdf]
    • Goresky, MacPherson. Intersection homology II. [pdf]
    • MacPherson. Intersection cohomology and Perverse Sheaves. [pdf]
    • Lusztig. Intersection cohomology methods in representation theory. [pdf]
    • Hotta, Takeuchi, Tanisaki. D-Modules, Perverse Sheaves, and Representation Theory. 
    • Etingof. Introduction to Algebra $mathcal{D}$-module. [pdf]
    • Goresky. Introduction to Perverse Sheaves, lecture notes [pdf]
    • Kirwan, Woolf, An introduction to intersection homology. 
    • Tsai. Introduction to Perverse Sheaves [pdf]
    • Beilinson, Bernstein, Deligne and Gabber. Faisceaux pervers.  
    • Borel. Intersection Cohomology. 
    • Maxim. Intersection Homology & Perverse Sheaves. GTM 281.
    • Ginzburg. Geometric methods in the representation theory of Hecke algebras and quantum groups. [arXiv]
    • Jantzen. Moment graphs and representations. [pdf

    > Symplectic Geometry

    • da Silva. Lectures on Symplectic Geometry. [pdf]
    • McDuff, Salamon. Introduction to symplectic topology. 

    > Geometric Invariant Theory. 

    • Milne. Algebraic Groups. 
    • Milne. Reductive Groups. [pdf]
    • Mumford. Geometric invariant theory. 
    • Mukai. An introduction to invariants and Moduli. [pdf]

    TBA

    $square$
  • 相关阅读:
    xt
    UVA 10200 Prime Time (打表)
    CodeForces 540B School Marks
    CodeForces 540C Ice Cave (BFS)
    poj 3250 Bad Hair Day(栈的运用)
    hdu A Magic Lamp
    hdu 4325 Flowers(区间离散化)
    hdu 5500 Reorder the Books
    V2X之标准
    V2X的前生今世
  • 原文地址:https://www.cnblogs.com/XiongRuiMath/p/13818413.html
Copyright © 2011-2022 走看看