背景
最近下载了一批类似百家讲坛的音频文件。这些文件前面部分是演讲类的音频,主要讲历史的,后面一部分是音乐。
但是我只想听演讲类部分,不想听音乐。所以希望把文件切割,把音乐部分切走,只留下演讲部分。
观察文件,发现每个文件的音乐都不一样,演讲和音乐的长度也不一样。
这里一个技术难点就是怎么识别哪些音频是演讲,哪些音频是音乐。
通过KNN算法,1s的音频文件的预测正确率是92%。
同时3s都判断为音乐才进行分割,整个文件的分割正确率是98%。
音频文件和源码
音频文件和源码可以在这里下载
一、把音频文件转换为数字
# encoding=gbk
import random
import wave
import matplotlib.pyplot as plt
import numpy as np
import os
# nchannels 声道
# sampwidth 样本宽度
# framerate 帧率,也就是一秒有多少帧
# nframes 文件一共有多少帧
def pre_deal(file_path):
"""音频解析,返回音频数据"""
f = wave.open(file_path, 'rb')
params = f.getparams()
nchannels, sampwidth, framerate, nframes = params[:4]
strData = f.readframes(nframes) # 读取音频,字符串格式
waveData = np.fromstring(strData, dtype=np.int16) # 将字符串转化为int
waveData = waveData[::nchannels] # 根据声道数,转换为单声道
rate = 20.00
framerate = framerate / rate # 降低帧率
nframes = nframes / rate # 降低帧率
waveData = waveData[::int(rate)]
# wave幅值归一化
max_ = float(max(abs(waveData)))
waveData = waveData / max_
return waveData, framerate, nframes
def plpot(waveData):
"""画图"""
time = [i for i, v in enumerate(waveData)]
plt.plot(time, waveData)
plt.xlabel("Time")
plt.ylabel("Amplitude")
plt.title("Single channel wavedata")
plt.grid('on') # 标尺,on:有,off:无。
plt.show()
def mp3towav(file_path, to_file_path):
"""mp3文件转wav文件"""
if os.path.exists(to_file_path):
return to_file_path
from pydub import AudioSegment
print file_path
song1 = AudioSegment.from_mp3(file_path)
song1.export(to_file_path, 'wav')
return to_file_path
if __name__ == '__main__':
file_path = 'D:BaiduNetdiskDownload\a.mp3'
file_path = mp3towav('D:BaiduNetdiskDownload\a.mp3', file_path.replace('mp3', 'wav'))
data, _, _ = pre_deal(file_path)
plpot(data)
- 通过
wave
库,可以识别音频文件,声道,样本宽度,帧率,帧数等 - 由于文件的左右声道的值都一样,所以简单处理只要其中一个声道
- 为了提升机器学习速度,修改采样率为20分之一,来降低数据量
- wave库只支持wav文件,所以需要把mp3转换为wav,这里用到了pydub库
- 解析音频数据后,通过matplotlib库来画图,显示出波纹图
二、人工标记数据
使用音频处理软件goldwave,采用人工听的方法来把音频文件的音乐部分剪掉,保存的文件放在chg目录里面,剪之前的文件放在raw目录下面。一共剪了18个文件。
三、获取训练数据
class LeaningTest():
chg_path = r'D:BaiduNetdiskDownload estchg'
raw_path = r'D:BaiduNetdiskDownload est
aw'
model = None
@classmethod
def load_model(cls):
cls.model = pickle_utils.load('knn.model.pkl')
@classmethod
def chg(cls):
chg_path = r'D:BaiduNetdiskDownload estchg'
raw_path = r'D:BaiduNetdiskDownload est
aw'
for i, f in enumerate(os.listdir(chg_path)):
shutil.copy(chg_path + '\' + f, chg_path + '\' + '%s.mp3' % i)
shutil.copy(raw_path + '\' + f, raw_path + '\' + '%s.mp3' % i)
@classmethod
def get_path(cls, i, t):
p = cls.chg_path if t == 'chg' else cls.raw_path
return p + '\' + '%s.mp3' % i
@classmethod
def sample_cnt(cls, sample):
"""
转换样本数据,返回每个区间的计数。
例如从[0.1,0.1,0.8]转换为[2,1]
2是[0,0.5)区间的计数
1是[0.5,1)区间的计数
"""
step = 0.025
qujians = []
start = 0
while start < 1:
qujians.append((start, start + step))
start += step
new_sample = [0 for i in range(len(qujians))]
for s in sample:
for i, qujian in enumerate(qujians):
if qujian[0] <= s < qujian[1]:
new_sample[i] += 1
return new_sample
@classmethod
def get_sample(cls, i):
"""
获取用于机器学习的数据
return [([100,200],0)]
"""
chg = cls.to_wav(cls.get_path(i, 'chg'))
raw = cls.to_wav(cls.get_path(i, 'raw'))
data_chg, framerate_chg, n_frames_chg = pre_deal(chg)
total_sec_chg = int(n_frames_chg / framerate_chg)
data_raw, framerate_raw, n_frames_raw = pre_deal(raw)
total_sec_raw = int(n_frames_raw / framerate_raw)
length = 1
samples = []
for i in range(60, total_sec_raw, length):
if total_sec_chg + 5 < i < total_sec_chg + 5:
continue # 不要这部分
flag = 0 if i < total_sec_chg else 1
# print get_index(framerate, 0, i),get_index(framerate, 0, i + length),total_sec
sample = data_raw[get_index(framerate_raw, 0, i):get_index(framerate_raw, 0, i + length)]
sample = cls.sample_cnt(sample)
samples.append((sample, flag))
return samples
@classmethod
def to_wav(cls, file_path):
"""转换mp3为wav"""
if 'mp3' in file_path:
to_file_path = file_path.replace('mp3', 'wav')
mp3towav(file_path, to_file_path)
file_path = to_file_path
return file_path
@classmethod
def get_all_sample(cls, ):
"""获取所有样本"""
file_name = 'sample4.json'
if os.path.exists(file_name):
with open(file_name, 'r') as f:
return json.loads(f.read())
else:
samples = []
for i in range(1):
print 'get sample', i
samples.extend(cls.get_sample(i))
with open(file_name, 'w') as f:
f.write(json.dumps(samples))
return samples
@classmethod
def train_wrapper(cls):
"""训练"""
samples = cls.get_all_sample()
label0 = [s for s in samples if s[1] == 0]
label1 = [s for s in samples if s[1] == 1]
random.shuffle(label0)
random.shuffle(label1)
train_datas_sets = [i[0] for i in label0[:int(len(label0) * 0.7)]] + [i[0] for i in
label1[:int(len(label1) * 0.7)]]
train_labels_set = [i[1] for i in label0[:int(len(label0) * 0.7)]] + [i[1] for i in
label1[:int(len(label1) * 0.7)]]
test_datas_set = [i[0] for i in label0[int(len(label0) * 0.7):]] + [i[0] for i in
label1[int(len(label1) * 0.7):]]
test_labels_set = [i[1] for i in label0[int(len(label0) * 0.7):]] + [i[1] for i in
label1[int(len(label1) * 0.7):]]
print len(train_datas_sets)
# cls.train_knn(train_datas_sets, train_labels_set, test_datas_set, test_labels_set)
if __name__ == '__main__':
LeaningTest.train_wrapper()
- 以1秒钟为一个样本,然后对数据进行计数,返回每个区间的计数,区间间隔是0.025,所以一个样布的向量长度是40
- 由于前60s都是前奏,所以不作为训练数据
- 由于是人工分割,所以可能有误差,所以把分割点前后5s的都不作为训练数据
四、训练
@classmethod
def train(cls, train_datas_sets, train_labels_set, test_datas_set, test_labels_set):
"""
"""
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import LinearRegression
from sklearn import tree
from sklearn import svm
from sklearn.neural_network import MLPClassifier
from sklearn import neighbors
for mechine in [svm.SVC, LogisticRegression, LinearRegression, tree.DecisionTreeClassifier,
neighbors.KNeighborsClassifier, MLPClassifier, GaussianNB]:
clf = mechine()
clf.fit(train_datas_sets, train_labels_set) # 训练
score = clf.score(test_datas_set, test_labels_set) # 预测测试集,并计算正确率
print 'score', mechine, score
训练结果:
score <class 'sklearn.svm.classes.SVC'> 0.7203252032520325
score <class 'sklearn.linear_model.logistic.LogisticRegression'> 0.8886178861788618
score <class 'sklearn.linear_model.base.LinearRegression'> 0.40864632529611417
score <class 'sklearn.tree.tree.DecisionTreeClassifier'> 0.8888888888888888
score <class 'sklearn.neighbors.classification.KNeighborsClassifier'> 0.9224932249322493
score <class 'sklearn.neural_network.multilayer_perceptron.MLPClassifier'> 0.835230352303523
score <class 'sklearn.naive_bayes.GaussianNB'> 0.8035230352303523
- 使用多种模型进行训练,得到的结果为knn的准确率最高,达到了0.92
所以训练knn模型,并保存为pickle
@classmethod
def train_knn(cls, train_datas_sets, train_labels_set, test_datas_set, test_labels_set):
from sklearn import neighbors
mechine = neighbors.KNeighborsClassifier
clf = mechine()
clf.fit(train_datas_sets, train_labels_set) # 训练
score = clf.score(test_datas_set, test_labels_set) # 预测测试集,并计算正确率
print 'score', mechine, score
pickle_utils.dump(clf, 'knn.model.pkl')
五、分割文件
@classmethod
def get_cut_sce(cls, file_path, model):
"""获取分割的秒数,找不到返回None"""
file_path = cls.to_wav(file_path)
data_raw, framerate, n_frames = pre_deal(file_path)
total_sec = int(n_frames / framerate)
length = 1
rets = []
for i in range(60, total_sec, length):
# print file_path, i
sample = data_raw[get_index(framerate, 0, i):get_index(framerate, 0, i + length)]
sample = cls.sample_cnt(sample)
ret = model.predict([sample])
rets.append(ret)
if ret == 1 and len(rets) >= 3 and rets[-2] == 1 and rets[-3] == 1:
return i
return None
@classmethod
def get_min(cls, sec):
"""转换秒数为 分秒格式"""
print '%s:%s' % (int(sec / 60), int(sec % 60))
@classmethod
def predict(cls, ):
"""预测"""
file_path = r'D:BaiduNetdiskDownloadc.mp3'
model = pickle_utils.load('knn.model.pkl')
sec = cls.get_cut_sce(file_path, model)
print 'sec', sec, cls.get_min(sec)
@classmethod
def cut_song(cls, file_path, to_file_path, file_name):
"""分割歌曲"""
print 'cut_song', file_name.decode('gbk'), file_path
sec = cls.get_cut_sce(file_path, cls.model)
if sec is None:
print 'error can not find sec', file_path, file_name.decode('gbk')
return 0
song = AudioSegment.from_mp3(file_path)
# to_file_path=file_path.replace('mp3','wav')
song = song[:sec * 1000]
song.export(to_file_path, 'mp3', bitrate='64k')
return 1
@classmethod
def cut_songs(cls, ):
"""分割某个文件夹下面的所有歌曲"""
root_path = r'D:BaiduNetdiskDownload听世界-战国5(156集)64kbps'
del_path = r'D:BaiduNetdiskDownload o_del'
for f in os.listdir(root_path):
if 'mp3' in f and 'cut' not in f:
file_path = root_path + '\' + f
if os.path.exists(file_path + '.cut.mp3'):
print 'exist', file_path.decode('gbk') + '.cut.mp3'
continue
# 由于pydub不支持windows的中文路径,所以只能把源文件已到一个临时的英文目录,然后执行分割 然后把临时文件移走
tmp_file_path = 'D:BaiduNetdiskDownload\test.mp3' # pydub不支持中文地址,只能这样
tmp_wav_path = tmp_file_path.replace('mp3', 'wav')
tmp_to_file_path = tmp_file_path + '.cut.mp3'
shutil.copy(file_path, tmp_file_path)
ret = cls.cut_song(tmp_file_path, tmp_to_file_path,f)
shutil.move(tmp_file_path, del_path + '\del1_' + f)
shutil.move(tmp_wav_path, del_path + '\del3_' + f)
try:
# 有可能找不到分割点,导致没有分割,所以加上try
shutil.copy(tmp_to_file_path, file_path + '.cut.mp3')
shutil.move(tmp_to_file_path, del_path + '\del2_' + f)
except:
import traceback
print traceback.format_exc()
@classmethod
def test(cls):
song = AudioSegment.from_mp3(u'D:BaiduNetdiskDownload测试\a.mp3'.encode('gbk'))
if __name__ == '__main__':
LeaningTest.load_model()
LeaningTest.cut_songs()
- 即使准确率达到0.92,但是还没有到100%,所以连续3s都判断为音乐,才分割,这样理论的准确率可以去到1-0.08^3。
- 由于pydub不支持windows的中文路径,所以只能把源文件已到一个临时的英文目录,然后执行分割 然后把临时文件移走
未经同意,请不要转载