链接:
https://vjudge.net/problem/SPOJ-GSS1
题意:
You are given a sequence A[1], A[2], ..., A[N] . ( |A[i]| ≤ 15007 , 1 ≤ N ≤ 50000 ). A query is defined as follows:
Query(x,y) = Max { a[i]+a[i+1]+...+a[j] ; x ≤ i ≤ j ≤ y }.
Given M queries, your program must output the results of these queries.
区间最大子段和
思路:
线段树维护,区间总和, 区间中间最大和, 区间以左端点为起点的最大和, 区间以有端的结束的最大和.
向上的维护代码
void PushUp(int root)
{
Seg[root].sum = Seg[root<<1].sum+Seg[root<<1|1].sum;
//区间和
Seg[root].midmax = max(Seg[root<<1].rmax+Seg[root<<1|1].lmax, max(Seg[root<<1].midmax, Seg[root<<1|1].midmax));
//区间中间和,左节点中间和,右节点中间和,左节点右边和加右节点左边和,三个取最大
Seg[root].lmax = max(Seg[root<<1].sum+Seg[root<<1|1].lmax, Seg[root<<1].lmax);
//区间左边和, 左节点左边和,左节点区间和加右节点左边和,两个取最大
Seg[root].rmax = max(Seg[root<<1|1].sum+Seg[root<<1].rmax, Seg[root<<1|1].rmax);
//区间右边的, 右节点右边和,右节点区间和加左节点右边和,两个最大
}
查询学到了新操作,返回结构体,挺好用的
代码:
/*
*线段树维护区间最大子段和
* 模板
*/
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int MAXN = 5e4+10;
const int INF = 1e9+10;
const int NINF = -1e9;
struct SegmentTree
{
LL sum;//区间全部和
LL midmax;//区间中间值最大和
LL lmax;//以左端点为起点的最大和
LL rmax;//以右端点为终点的最大和
}Seg[MAXN*4];
LL a[MAXN];
int n, q;
void PushUp(int root)
{
Seg[root].sum = Seg[root<<1].sum+Seg[root<<1|1].sum;
//区间和
Seg[root].midmax = max(Seg[root<<1].rmax+Seg[root<<1|1].lmax, max(Seg[root<<1].midmax, Seg[root<<1|1].midmax));
//区间中间和,左节点中间和,右节点中间和,左节点右边和加右节点左边和,三个取最大
Seg[root].lmax = max(Seg[root<<1].sum+Seg[root<<1|1].lmax, Seg[root<<1].lmax);
//区间左边和, 左节点左边和,左节点区间和加右节点左边和,两个取最大
Seg[root].rmax = max(Seg[root<<1|1].sum+Seg[root<<1].rmax, Seg[root<<1|1].rmax);
//区间右边的, 右节点右边和,右节点区间和加左节点右边和,两个最大
}
void Build(int root, int l, int r)
{
if (l == r)
{
Seg[root].sum = Seg[root].midmax = Seg[root].lmax = Seg[root].rmax = a[l];
return;
}
int mid = (l+r)/2;
Build(root<<1, l, mid);
Build(root<<1|1, mid+1, r);
PushUp(root);
}
SegmentTree Query(int root, int l, int r, int ql, int qr)
{
SegmentTree lt = {NINF, NINF, NINF, NINF}, rt = {NINF, NINF, NINF, NINF}, re = {NINF, NINF, NINF, NINF};
if (ql <= l && r <= qr)
return Seg[root];
int mid = (l+r)/2;
if (ql <= mid)
lt = Query(root<<1, l, mid, ql, qr);
if (qr > mid)
rt = Query(root<<1|1, mid+1, r, ql, qr);
re.sum = lt.sum+rt.sum;
re.midmax = max(lt.rmax+rt.lmax, max(lt.midmax, rt.midmax));
re.lmax = max(lt.sum+rt.lmax, lt.lmax);
re.rmax = max(rt.sum+lt.rmax, rt.rmax);
return re;
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n;
for (int i = 1;i <= n;i++)
cin >> a[i];
Build(1, 1, n);
cin >> q;
int l, r;
while (q--)
{
cin >> l >> r;
SegmentTree res = Query(1, 1, n, l, r);
cout << max(res.midmax, max(res.lmax, res.rmax)) << endl;
}
return 0;
}