zoukankan      html  css  js  c++  java
  • POJ-2516-Minimum Cost(网络流, 最小费用最大流)

    链接:

    https://vjudge.net/problem/POJ-2516

    题意:

    Dearboy, a goods victualer, now comes to a big problem, and he needs your help. In his sale area there are N shopkeepers (marked from 1 to N) which stocks goods from him.Dearboy has M supply places (marked from 1 to M), each provides K different kinds of goods (marked from 1 to K). Once shopkeepers order goods, Dearboy should arrange which supply place provide how much amount of goods to shopkeepers to cut down the total cost of transport.

    It's known that the cost to transport one unit goods for different kinds from different supply places to different shopkeepers may be different. Given each supply places' storage of K kinds of goods, N shopkeepers' order of K kinds of goods and the cost to transport goods for different kinds from different supply places to different shopkeepers, you should tell how to arrange the goods supply to minimize the total cost of transport.

    思路:

    建图, 但是不能对每个商品同时建图,每个商品矩阵分别建图,同时不满足条件就不要跑费用流了..会T.

    代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <vector>
    //#include <memory.h>
    #include <queue>
    #include <set>
    #include <map>
    #include <algorithm>
    #include <math.h>
    #include <stack>
    #include <string>
    
    #define MINF 0x3f3f3f3f
    using namespace std;
    typedef long long LL;
    
    const int MAXN = 50+10;
    const int INF = 1e9;
    
    struct Edge
    {
        int from, to, flow, cap, cost;
        Edge(int from, int to, int flow, int cap, int cost)
        {
            this->from = from;
            this->to = to;
            this->flow = flow;
            this->cap = cap;
            this->cost = cost;
        }
    };
    
    vector<Edge> edges;
    vector<int> G[MAXN*MAXN*MAXN];
    int Sh[MAXN][MAXN];
    int Wo[MAXN][MAXN];
    int SumN[MAXN];
    int a[MAXN*MAXN];
    int Vis[MAXN*MAXN*MAXN], Dis[MAXN*MAXN*MAXN], Pre[MAXN*MAXN*MAXN];
    int n, m, k;
    int s, t;
    
    void AddEdge(int from, int to, int cap, int cost)
    {
        edges.push_back(Edge(from, to, 0, cap, cost));
        edges.push_back(Edge(to, from, 0, 0, -cost));
        int len = edges.size();
        G[from].push_back(len-2);
        G[to].push_back(len-1);
    }
    
    bool SPFA()
    {
        memset(Dis, MINF, sizeof(Dis));
        memset(Vis, 0, sizeof(Vis));
        queue<int> que;
        Dis[s] = 0;
        Vis[s] = 1;
        que.push(s);
        a[s] = INF;
        while (!que.empty())
        {
    //        for (int i = s;i <= t;i++)
    //            cout << Dis[i] << ' ' ;
    //        cout << endl;
            int u = que.front();
    //        cout << u << endl;
            que.pop();
            Vis[u] = 0;
            for (int i = 0;i < G[u].size();i++)
            {
                Edge &e = edges[G[u][i]];
                if (e.cap > e.flow && Dis[e.to] > Dis[u]+e.cost)
                {
                    Dis[e.to] = Dis[u]+e.cost;
                    Pre[e.to] = G[u][i];
                    a[e.to] = min(a[u], e.cap-e.flow);
                    if (!Vis[e.to])
                    {
                        que.push(e.to);
                        Vis[e.to] = 1;
                    }
                }
            }
        }
        if (Dis[t] != MINF)
            return true;
        return false;
    }
    
    int CostFlow(int &Flow)
    {
        int cost = 0;
        while (SPFA())
        {
    //        cout << 1 << endl;
    //        int Min = INF;
    //        for (int i = t;i != s;i = edges[Pre[i]].from)
    //            Min = min(Min, edges[Pre[i]].cap-edges[Pre[i]].flow);
    //        cout << Min << endl;
            for (int i = t;i != s;i = edges[Pre[i]].from)
            {
                edges[Pre[i]].flow += a[t];
                edges[Pre[i]^1].flow -= a[t];
    //            Edge &e = edges[Pre[i]], &ee = edges[Pre[i]^1];
    //            cout << e.from << ' ' << e.to << ' ' << e.flow << ' ' << e.cap << endl;
    //            cout << ee.from << ' ' << ee.to << ' ' << ee.flow << ' ' << ee.cap << endl;
    //            cout << endl;
            }
            cost += a[t]*Dis[t];
            Flow += a[t];
        }
        return cost;
    }
    
    void Init()
    {
        for (int i = 0;i <= n+m+1;i++)
            G[i].clear();
        edges.clear();
    }
    
    int main()
    {
    //    ios::sync_with_stdio(false);
    //    cin.tie(0);
        while (~scanf("%d %d %d", &n, &m, &k) && (n+m+k))
        {
            s = 0, t = n+m+1;
            for (int i = 1;i <= n;i++)
            {
                for (int j = 1;j <= k;j++)
                    scanf("%d", &Sh[i][j]);
            }
            memset(SumN, 0, sizeof(SumN));
            for (int i = 1;i <= m;i++)
            {
                for (int j = 1;j <= k;j++)
                    scanf("%d", &Wo[i][j]), SumN[j] += Wo[i][j];
            }
            int v;
            //shop = n*k
            //wo = n*k+m*k
            int res = 0, sumflow = 0;
            bool ok = true;
            for (int i = 1;i <= k;i++)
            {
                Init();
                int tmp = 0;
                for (int j = 1;j <= n;j++)
                {
                    AddEdge(s, j, Sh[j][i], 0);
                    tmp += Sh[j][i];
                }
                if (tmp > SumN[i])
                    ok = false;
                for (int j = 1;j <= n;j++)
                {
                    for (int z = 1;z <= m;z++)
                    {
                        scanf("%d", &v);
                        AddEdge(j, n+z, INF, v);
                    }
                }
                for (int j = 1;j <= m;j++)
                    AddEdge(n+j, t, Wo[j][i], 0);
                if (ok)
                    res += CostFlow(sumflow);
            }
            if (!ok)
                puts("-1");
            else
                printf("%d
    ", res);
        }
    
        return 0;
    }
    
  • 相关阅读:
    前端学习(六):body标签(四)
    前端学习(五):body标签(三)
    前端学习(四):body标签(二)
    前端学习(三):body标签(一)
    volatile的作用以及原理解析
    【转载】synchronized锁的升级过程
    从三个层面解析synchronized原理
    将网页图片转base64打包导出实战和踩坑
    synchronized锁住的到底是什么以及用法作用
    多线程之程序的局部性原理和伪共享问题
  • 原文地址:https://www.cnblogs.com/YDDDD/p/11321810.html
Copyright © 2011-2022 走看看