zoukankan      html  css  js  c++  java
  • HDU-4280-Island Transport(网络流,最大流, ISAP)

    链接:

    https://vjudge.net/problem/HDU-4280

    题意:

    In the vast waters far far away, there are many islands. People are living on the islands, and all the transport among the islands relies on the ships.
      You have a transportation company there. Some routes are opened for passengers. Each route is a straight line connecting two different islands, and it is bidirectional. Within an hour, a route can transport a certain number of passengers in one direction. For safety, no two routes are cross or overlap and no routes will pass an island except the departing island and the arriving island. Each island can be treated as a point on the XY plane coordinate system. X coordinate increase from west to east, and Y coordinate increase from south to north.
      The transport capacity is important to you. Suppose many passengers depart from the westernmost island and would like to arrive at the easternmost island, the maximum number of passengers arrive at the latter within every hour is the transport capacity. Please calculate it.

    思路:

    考虑无向图,只需给反向边加上容量,同时图的点很多,使用ISAP算法.
    找了很久,看了很久..找的代码bfs写错了(貌似?).最后很久才改出来.

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    
    const int MAXN = 1e5+10;
    const int INF = 1e9;
    
    struct Edge
    {
        int from, to, flow, cap;
    };
    
    int Pre[MAXN], Cur[MAXN];
    int Num[MAXN], Vis[MAXN];
    int Dis[MAXN];
    vector<int> G[MAXN];
    vector<Edge> edges;
    int n, m, s, t;
    
    void AddEdge(int from, int to, int cap)
    {
        edges.push_back(Edge{from, to, 0, cap});
        edges.push_back(Edge{to, from, 0, cap});
        int len = edges.size();
        G[from].push_back(len - 2);
        G[to].push_back(len - 1);
    }
    
    void Bfs()
    {
        memset(Vis, 0, sizeof(Vis));
        queue<int> que;
        que.push(t);
        Vis[t] = 1;
        Dis[t] = 0;
        while (!que.empty())
        {
            int u = que.front();
            que.pop();
            for (int i = 0;i < G[u].size();i++)
            {
                Edge &e = edges[G[u][i]^1];
                if (Vis[e.from] == 0 && e.cap > e.flow)
                {
                    Vis[e.from] = 1;
                    que.push(e.from);
                    Dis[e.from] = Dis[u]+1;
                }
            }
        }
    }
    
    int Augment()
    {
    //    cout << 1 << endl;
        int x = t, flow = INF;
        while (x != s)
        {
            Edge &e = edges[Pre[x]];
    //        cout << e.from << ' ' << e.to << endl;
            flow = min(flow, e.cap-e.flow);
            x = e.from;
        }
    //    cout << flow << endl;
        x = t;
        while (x != s)
        {
            edges[Pre[x]].flow += flow;
            edges[Pre[x]^1].flow -= flow;
            x = edges[Pre[x]].from;
        }
        return flow;
    }
    
    int MaxFlow()
    {
        int flow = 0;
        Bfs();
        memset(Num, 0, sizeof(Num));
        for (int i = 0;i < n;i++)
            Num[Dis[i]]++;
        int x = s;
        memset(Cur, 0, sizeof(Cur));
        while (Dis[s] < n)
        {
            if (x == t)
            {
                flow += Augment();
                x = s;
            }
            bool ok = false;
            for (int i = Cur[x];i < G[x].size();i++)
            {
                Edge &e = edges[G[x][i]];
                if (e.cap > e.flow && Dis[x] == Dis[e.to]+1)
                {
                    ok = true;
                    Pre[e.to] = G[x][i];
                    Cur[x] = i;
                    x = e.to;
                    break;
                }
            }
            if (!ok)
            {
                int line = n-1;
                for (int i = 0;i < G[x].size();i++)
                {
                    Edge &e = edges[G[x][i]];
                    if (e.cap > e.flow)
                        line = min(line, Dis[e.to]);
                }
                if (--Num[Dis[x]] == 0)
                    break;
                Dis[x] = line+1;
                Num[Dis[x]]++;
                Cur[x] = 0;
                if (x != s)
                    x = edges[Pre[x]].from;
            }
        }
        return flow;
    }
    
    int main()
    {
        int T;
        scanf("%d", &T);
        while (T--)
        {
            scanf("%d %d", &n, &m);
            for (int i = 1;i <= n;i++)
                G[i].clear();
            edges.clear();
            int mmin = INF, mmax = -INF;
            int u, v, w;
            for (int i = 1;i <= n;i++)
            {
                scanf("%d %d", &u, &v);
                if (u < mmin)
                    s = i, mmin = u;
                if (u > mmax)
                    t = i, mmax = u;
            }
            for (int i = 1;i <= m;i++)
            {
                scanf("%d %d %d", &u, &v, &w);
                AddEdge(u, v, w);
            }
            int res = MaxFlow();
            printf("%d
    ", res);
        }
    
        return 0;
    }
    
  • 相关阅读:
    如何定义开发完成?(Definition of Done)
    Git协同工作流介绍
    Git常用命令拾遗
    搭建基于Docker社区版的Kubernetes本地集群
    Mqtt学习指南
    JavaWeb 学习总结
    异常:org.apache.ibatis.exceptions.PersistenceException: ### Error querying database. Cause: com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: Communications link failure
    MySQL 插入中文错误:java.sql.SQLException: Incorrect string value:
    Servlet 中文乱码问题解析及详细解决方法
    常用正则表达式
  • 原文地址:https://www.cnblogs.com/YDDDD/p/11329074.html
Copyright © 2011-2022 走看看