zoukankan      html  css  js  c++  java
  • Codeforces Round #589 (Div. 2) E. Another Filling the Grid(DP, 组合数学)

    链接:

    https://codeforces.com/contest/1228/problem/E

    题意:

    You have n×n square grid and an integer k. Put an integer in each cell while satisfying the conditions below.

    All numbers in the grid should be between 1 and k inclusive.
    Minimum number of the i-th row is 1 (1≤i≤n).
    Minimum number of the j-th column is 1 (1≤j≤n).
    Find the number of ways to put integers in the grid. Since the answer can be very large, find the answer modulo (109+7).

    These are the examples of valid and invalid grid when n=k=2.

    思路:

    Dp[i][j] 表示前i行有j列有1同时保证每一行都有1,考虑转移, 当转移上下两行列的1数相等时.
    单独考虑, 1的列可以是任意值,但是必须存在一个1保证当前行存在1.

    代码:

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long LL;
    const int MOD = 1e9+7;
    
    LL C[300][300];
    LL Dp[300][300];
    LL M1[300], M2[300];
    LL n, k;
    
    int main()
    {
        C[0][0] = C[1][0] = C[1][1] = 1;
        for (int i = 2;i <= 250;i++)
        {
            C[i][0] = C[i][i] = 1;
            for (int j = 1;j < i;j++)
                C[i][j] = (C[i-1][j]+C[i-1][j-1])%MOD;
        }
        M1[0] = M2[0] = 1;
        cin >> n >> k;
        for (int i = 1;i <= n;i++)
            M1[i] = (M1[i-1]*k)%MOD, M2[i] = (M2[i-1]*(k-1))%MOD;
        //k^i
        for (int i = 1;i <= n;i++)
            Dp[1][i] = (C[n][i]*M2[n-i])%MOD;
        for (int i = 2;i <= n;i++)
        {
            for (int j = 1;j <= n;j++)
            {
                for (int p = j;p <= n;p++)
                {
                    LL res = ((C[n-j][p-j]*M2[n-p])%MOD*M1[j])%MOD;
                    if (p == j)
                        res = ((M1[j]-M2[j])*M2[n-j])%MOD;
                    LL sum = (Dp[i-1][j]*res)%MOD;
                    Dp[i][p] = (Dp[i][p]%MOD + sum + MOD)%MOD;
                }
            }
        }
        cout << Dp[n][n] << endl;
    
        return 0;
    }
    
  • 相关阅读:
    JVM 类加载过程
    JVM调优总结 -Xms
    JVM 内存模型
    git克隆远程项目并创建本地对应分支
    内存泄漏 和 内存溢出
    weblogic 乱码
    tomcat 、NIO、netty 本质
    Anything is possible if you have got enough nerve.
    maven build 的时候,卡死在Downloading metadata的解决方法
    TimeUnit
  • 原文地址:https://www.cnblogs.com/YDDDD/p/11620467.html
Copyright © 2011-2022 走看看