zoukankan      html  css  js  c++  java
  • SPOJ

    链接:

    https://vjudge.net/problem/SPOJ-BALNUM

    题意:

    Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a balanced number if:

    1.  Every even digit appears an odd number of times in its decimal representation
      
    2.  Every odd digit appears an even number of times in its decimal representation
      

    For example, 77, 211, 6222 and 112334445555677 are balanced numbers while 351, 21, and 662 are not.

    Given an interval [A, B], your task is to find the amount of balanced numbers in [A, B] where both A and B are included.

    思路:

    三进制记录每个值用的奇数次还是偶数次。
    直接DP即可。

    代码:

    // #include<bits/stdc++.h>
    #include<iostream>
    #include<cstdio>
    #include<vector>
    #include<string.h>
    #include<set>
    #include<queue>
    #include<algorithm>
    #include<math.h>
    using namespace std;
    typedef long long LL;
    typedef unsigned long long ULL;
    const int MOD = 1e9+7;
    const int MAXN = 1e6+10;
    
    ULL a, b;
    ULL F[21][60000];
    int dig[21];
    ULL m[11];
    
    int Upd(int x, int p)
    {
        int sum = 0;
        for (int i = 0;i < 10;i++)
        {
            int tmp = x%3;
            x /= 3;
            if (i == p)
                sum += (tmp == 1 ? 2 : 1) * m[i];
            else
                sum += tmp * m[i];
        }
        return sum;
    }
    
    bool Check(int x)
    {
        int p = 0;
        while(x)
        {
            if (x%3 == 2 && p%2 == 0)
                return false;
            if (x%3 == 1 && p%2 == 1)
                return false;
            x /= 3;
            p++;
        }
        return true;
    }
    
    ULL Dfs(int pos, int sta, bool zer, bool lim)
    {
        if (pos == -1)
            return Check(sta);
        if (!lim && F[pos][sta] != -1)
            return F[pos][sta];
        int up = lim ? dig[pos] : 9;
        ULL ans = 0;
        for (int i = 0;i <= up;i++)
        {
            ans += Dfs(pos-1, (zer && i == 0) ? 0 : Upd(sta, i), zer && i == 0, lim && i == up);
        }
        if (!lim)
            F[pos][sta] = ans;
        return ans;
    }
    
    ULL Solve(ULL x)
    {
        int p = 0;
        while(x)
        {
            dig[p++] = x%10;
            x /= 10;
        }
        return Dfs(p-1, 0, 1, 1);
    }
    
    int main()
    {
        // freopen("test.in", "r", stdin);
        m[0] = 1;
        for (int i = 1;i < 11;i++)
            m[i] = m[i-1]*3;
        memset(F, -1, sizeof(F));
        int t;
        scanf("%d", &t);
        while(t--)
        {
            scanf("%llu %llu", &a, &b);
            printf("%llu
    ", Solve(b)-Solve(a-1));
        }
    
        return 0;
    }
    
  • 相关阅读:
    吴恩达 机器学习EX1学习笔记 MATLAB实现
    二分法解具有单调性的方程
    利用new定位运算符进行高效的数组动态增扩
    单循环链表基本操作及部分可能出现的细节问题
    数组中某元素的删除
    C# 实现可克隆(ICloneable)的类型
    Python学习十三
    Python学习十二
    Python学习十一
    Python学习十
  • 原文地址:https://www.cnblogs.com/YDDDD/p/12000230.html
Copyright © 2011-2022 走看看