zoukankan      html  css  js  c++  java
  • SPOJ

    链接:

    https://vjudge.net/problem/SPOJ-BALNUM

    题意:

    Balanced numbers have been used by mathematicians for centuries. A positive integer is considered a balanced number if:

    1.  Every even digit appears an odd number of times in its decimal representation
      
    2.  Every odd digit appears an even number of times in its decimal representation
      

    For example, 77, 211, 6222 and 112334445555677 are balanced numbers while 351, 21, and 662 are not.

    Given an interval [A, B], your task is to find the amount of balanced numbers in [A, B] where both A and B are included.

    思路:

    三进制记录每个值用的奇数次还是偶数次。
    直接DP即可。

    代码:

    // #include<bits/stdc++.h>
    #include<iostream>
    #include<cstdio>
    #include<vector>
    #include<string.h>
    #include<set>
    #include<queue>
    #include<algorithm>
    #include<math.h>
    using namespace std;
    typedef long long LL;
    typedef unsigned long long ULL;
    const int MOD = 1e9+7;
    const int MAXN = 1e6+10;
    
    ULL a, b;
    ULL F[21][60000];
    int dig[21];
    ULL m[11];
    
    int Upd(int x, int p)
    {
        int sum = 0;
        for (int i = 0;i < 10;i++)
        {
            int tmp = x%3;
            x /= 3;
            if (i == p)
                sum += (tmp == 1 ? 2 : 1) * m[i];
            else
                sum += tmp * m[i];
        }
        return sum;
    }
    
    bool Check(int x)
    {
        int p = 0;
        while(x)
        {
            if (x%3 == 2 && p%2 == 0)
                return false;
            if (x%3 == 1 && p%2 == 1)
                return false;
            x /= 3;
            p++;
        }
        return true;
    }
    
    ULL Dfs(int pos, int sta, bool zer, bool lim)
    {
        if (pos == -1)
            return Check(sta);
        if (!lim && F[pos][sta] != -1)
            return F[pos][sta];
        int up = lim ? dig[pos] : 9;
        ULL ans = 0;
        for (int i = 0;i <= up;i++)
        {
            ans += Dfs(pos-1, (zer && i == 0) ? 0 : Upd(sta, i), zer && i == 0, lim && i == up);
        }
        if (!lim)
            F[pos][sta] = ans;
        return ans;
    }
    
    ULL Solve(ULL x)
    {
        int p = 0;
        while(x)
        {
            dig[p++] = x%10;
            x /= 10;
        }
        return Dfs(p-1, 0, 1, 1);
    }
    
    int main()
    {
        // freopen("test.in", "r", stdin);
        m[0] = 1;
        for (int i = 1;i < 11;i++)
            m[i] = m[i-1]*3;
        memset(F, -1, sizeof(F));
        int t;
        scanf("%d", &t);
        while(t--)
        {
            scanf("%llu %llu", &a, &b);
            printf("%llu
    ", Solve(b)-Solve(a-1));
        }
    
        return 0;
    }
    
  • 相关阅读:
    docker 部署springboot
    CentOS 7 安装docker
    008自瞄原理
    007根据矩阵基地址绘制方框
    006寻找矩阵
    005分析其他人基地址
    易语言读取鼠标坐标x,y
    003获取鼠标x,y
    Oracle单机Rman笔记[0]---环境准备
    系统优化设计笔记--曹大公众号文章笔记
  • 原文地址:https://www.cnblogs.com/YDDDD/p/12000230.html
Copyright © 2011-2022 走看看