zoukankan      html  css  js  c++  java
  • FIRST和FOLLOW集的计算

    最近马上要步入考试周了,编译原理的这个Follow集一直令我头大啊,今天百度了下下,找到一篇文章,看了以后我瞬间就明白了如何求解Follow集~~哈哈,如果你也不知道如何求解Follow集,请看看下面的这篇日志吧 ,其实我发现,对于Follow集,我一开始不理解的地方就在那个Vn能推出ε的时候,就需要再往后考虑一个字符:)

    文法:

    S→ABc
    A→a|ε
    B→b|ε

    First集合求法:
    能 由非终结符号推出的所有的开头符号或可能的ε,但要求这个开头符号是终结符号。如此题A可以推导出a和ε,所以FIRST(A)={a,ε};同理 FIRST(B)={b,ε};S可以推导出aBc,还可以推导出bc,还可以推导出c,所以FIRST(S)={a,b,c}
    Follow集合的求法:
    紧跟随其后面的终结符号或#。但文法的识别符号包含#,在求的时候还要考虑到ε。 具体做法是把所有包含你要求的符号的产生式都找出来,再看哪个有用。 Follow(S)={#}
    如求A的,产生式:S→ABc A→a|ε ,但只有S→ABc 有用。跟随在A后年的终结符号是FIRST(B)={b,ε},当FIRST(B)的元素为ε时,跟随在A后的符号就是c,所以 Follow(A)={b,c} 同理Follow(B)={c}

    明天就考试了,在这里纠结这个问题。

    一,要知道什么是终结符和非终结符。

    终结符:通俗的说就是不能单独出现在推导式左边的符号,也就是说终结符不能再进行推导。

    非终结符:不是终结符的都是非终结符。(非男即女,呵呵)

    如:A——>B,则A是非终结符。

    (一般书上终结符用小写,非终结符用大写。)

    二,文法产生语言句子的基本思想:从识别符号(开始符)开始,把当前产生的符号串中的非终结符替换为相应规则右部的符号串,直到全部由终结符组成。

    三,FIRST集求法

        First集合最终是对产生式右部的字符串而言的,但其关键是求出非终结符的First集合,由于终结符的First集合就是它自己,所以求出非终结符的First集合后,就可很直观地得到每个字符串的First集合。

    1. 直接收取:对形如U->a…的产生式(其中a是终结符),把a收入到First(U)中

    2. 反复传送:对形入U->P…的产生式(其中P是非终结符),应把First(P)中的全部内容传送到First(U)中【意思就是只需要把第一个非终结符的First集传过去~这个地方是要注意的地方,也是难点】。

    四,FOLLOW集的求法

        Follow集合是针对非终结符而言的,Follow(U)所表达的是句型中非终结符U所有可能的后随终结符号的集合,特别地,“#”是识别符号的后随符。注意Follow集合是从开始符号S开始推导。

    1. 直接收取:注意产生式右部的每一个形如“…Ua…”的组合,把a直接收入到Follow(U)中。因a是紧跟在U后的终结符。

    2.直接收取:对形如“…UP…”(P是非终结符)的组合,把First(P)直接收入到Follow(U)中【在这里,如果First(P)中有空字符,那么就要把左部(假设是S)的Follow(S)送入到Follow(U)中。还有就是Follow集中是没有空字符的】。

    3. 直接收取:若S->…U,即以U结尾,则#∈Follow(U)

    4.*反复传送:对形如U->…P的产生式(其中P是非终结符),应把Follow(U)中的全部内容传送到Follow(P)中。

    Ps:Follow集比First要复杂一点,不过记住算法多做练习就是小Case啦。


    转载地方https://blog.csdn.net/Jack_Wong2010/article/details/9074951

  • 相关阅读:
    康复计划
    Leetcode 08.02 迷路的机器人 缓存加回溯
    Leetcode 38 外观数列
    Leetcode 801 使序列递增的最小交换次数
    Leetcode 1143 最长公共子序列
    Leetcode 11 盛水最多的容器 贪心算法
    Leetcode 1186 删除一次得到子数组最大和
    Leetcode 300 最长上升子序列
    Leetcode95 不同的二叉搜索树II 精致的分治
    Leetcode 1367 二叉树中的列表 DFS
  • 原文地址:https://www.cnblogs.com/YJBlog/p/11054525.html
Copyright © 2011-2022 走看看