zoukankan      html  css  js  c++  java
  • [BJOI2020] 封印

    题意:

    给出两个只包含小写字母的字符串S,T,有q次询问,每次求$S_{lcdots r}$和$T$的最长公共子串长度。

    $|S|,|T|,qleq 2 imes 10^5$。

    题解:

    挺水的一道题,给两位Au水平的选手出这个是认真的么……

    首先考虑怎么求两个串a,b的最长公共子串:直接建出b的SAM,把a的每个后缀放上去跑。

    直接跑是$O(n^{2})$的,考虑换个方式,对每个前缀i求出极大的$f_i$满足$S_{f_i cdots i}$是$T$的子串。

    那么如果知道了$f_{i-1}$和$S_{f_{i-1} cdots i-1}$在SAM上所属的节点u,$f_i$就可以通过暴力跳u的fa得到。

    这个复杂度和KMP的复杂度类似,都是$O(n)$的。

    回到本题,在求出$f_i$后我们实际上就是要对于每个询问求出$lleq ileq r,max{min(f_i , i-l+1)}$的值。

    变式一下,令$g_i = i-f_i +1$,则所求为$max{i-min(g_i , l)+1}$。

    那么显然可以离线之后以$g_i$为下标建权值线段树,每次在$[0,l-1]$查询$max{i}$,在$[l,n]$查询$max{i-g_i +1}$即可。

    如果强制在线,注意到$g_i$是单调不增的,所以可以对于每个$[l,r]$二分一下$g_p leq l$的位置p,然后普通线段树查询即可。

    复杂度$O(qlog{n})$。

    套路:

    • 优化数据结构时:注意维护的信息是否有单调性。
    • SAM与AC自动机的异同:都可以解决匹配问题;前者能解决子串,后者只能解决整串。

    代码:

    #include<bits/stdc++.h>
    #define maxn 500005
    #define maxm 500005
    #define inf 0x7fffffff
    #define ll long long
    #define rint register int
    #define debug(x) cerr<<#x<<": "<<x<<endl
    #define fgx cerr<<"--------------"<<endl
    #define dgx cerr<<"=============="<<endl
    
    using namespace std;
    int F[maxn]; char S[maxn],T[maxn];
    vector<int> vec[maxn];
    
    inline int read(){
        int x=0,f=1; char c=getchar();
        for(;!isdigit(c);c=getchar()) if(c=='-') f=-1;
        for(;isdigit(c);c=getchar()) x=x*10+c-'0';
        return x*f;
    }
    
    struct Ques{int l,r,ans;}Q[maxn];
    
    struct RAMauto{
        int to[maxn][30],dis[maxn],fa[maxn];
        inline void build(int n){
            int tot=1,las=1;
            for(int i=1;i<=n;i++){
                int now=++tot,p=las,ch=T[i]-'a';
                dis[tot]=i,las=now;
                while(p && !to[p][ch]) to[p][ch]=now,p=fa[p];
                if(!p) fa[now]=1;
                else{
                    int q=to[p][ch];
                    if(dis[q]==dis[p]+1) fa[now]=q;
                    else{
                        int nq=++tot; dis[nq]=dis[p]+1;
                        memcpy(to[nq],to[q],sizeof(to[q]));
                        fa[nq]=fa[q],fa[q]=nq,fa[now]=nq;
                        while(p && to[p][ch]==q) to[p][ch]=nq,p=fa[p];
                    }
                }
            }
        }
        inline void calc(int n){
            int now=1;
            for(int i=1;i<=n;i++){
                int ch=S[i]-'a';
                while(now && !to[now][ch]) now=fa[now];
                if(!now) now=1,F[i]=0;
                else F[i]=min(F[i-1],dis[now])+1,now=to[now][ch]; 
            }
        }
    }RAM;
    
    struct Segmentree{
        int mxid[maxn<<2],mxval[maxn<<2];
        inline void pushup(int k){
            mxid[k]=max(mxid[k<<1],mxid[k<<1|1]);
            mxval[k]=max(mxval[k<<1],mxval[k<<1|1]);
        }
        inline void ins(int x,int y,int l,int r,int k){
            if(l==r){mxid[k]=y,mxval[k]=y-x+1;return;}
            int mid=l+r>>1;
            if(x<=mid) ins(x,y,l,mid,k<<1);
            else ins(x,y,mid+1,r,k<<1|1);
            pushup(k);
        }
        inline int qryid(int x,int y,int l,int r,int k){
            if(x<=l && r<=y) return mxid[k];
            int mid=l+r>>1,res=0;
            if(x<=mid) res=max(res,qryid(x,y,l,mid,k<<1));
            if(y>mid) res=max(res,qryid(x,y,mid+1,r,k<<1|1));
            return res;
        }
        inline int qryval(int x,int y,int l,int r,int k){
            if(x<=l && r<=y) return mxval[k];
            int mid=l+r>>1,res=0;
            if(x<=mid) res=max(res,qryval(x,y,l,mid,k<<1));
            if(y>mid) res=max(res,qryval(x,y,mid+1,r,k<<1|1));
            return res;
        }
    }tr;
    
    int main(){
        scanf("%s",S+1),scanf("%s",T+1);
        int n=strlen(S+1),m=strlen(T+1); 
        RAM.build(m),RAM.calc(n);
        //for(int i=1;i<=n;i++) cout<<F[i]<<" ";
        //cout<<endl; 
        int q=read();
        for(int i=1;i<=q;i++)
            Q[i].l=read(),Q[i].r=read(),vec[Q[i].r].push_back(i);
        for(int i=1;i<=n;i++){
            int g=i-F[i]+1; tr.ins(g,i,0,n,1);    
            for(int j=0;j<vec[i].size();j++){
                int id=vec[i][j],l=Q[id].l;
                int r1=tr.qryid(0,l-1,0,n,1)-l+1,r2=tr.qryval(l,n,0,n,1);
                Q[id].ans=max(r1,r2);
            }    
        }
        for(int i=1;i<=q;i++)
            printf("%d
    ",Q[i].ans);
        return 0;
    }
    封印
  • 相关阅读:
    oracle之rman备份
    oracle数据库经常提示27102 out of memory解决方法
    异构环境oracle数据库迁移dmp文件之exp和imp以及expdp和impdp
    新安装的win7/win10系统,所有驱动都没安装,插入U盘也无法识别解决方法
    oracle使用一条语句批量插入多条数据
    oracle使用flashback时,没有显示undosql
    export的变量另开一个终端失效解决方法
    oracle服务器重启后无法进入系统,登录系统时提示model is unknow
    mysql将某数据库的全部权限赋给某用户,提示1044错误Access denied
    如何取消noarch.rpm包
  • 原文地址:https://www.cnblogs.com/YSFAC/p/13343968.html
Copyright © 2011-2022 走看看