zoukankan      html  css  js  c++  java
  • (最短路) Heavy Transportation --POJ--1797

    链接:

    http://poj.org/problem?id=1797

    Heavy Transportation
    Time Limit: 3000MS   Memory Limit: 30000K
    Total Submissions: 25089   Accepted: 6647

    Description

    Background 
    Hugo Heavy is happy. After the breakdown of the Cargolifter project he can now expand business. But he needs a clever man who tells him whether there really is a way from the place his customer has build his giant steel crane to the place where it is needed on which all streets can carry the weight. 
    Fortunately he already has a plan of the city with all streets and bridges and all the allowed weights.Unfortunately he has no idea how to find the the maximum weight capacity in order to tell his customer how heavy the crane may become. But you surely know. 

    Problem 
    You are given the plan of the city, described by the streets (with weight limits) between the crossings, which are numbered from 1 to n. Your task is to find the maximum weight that can be transported from crossing 1 (Hugo's place) to crossing n (the customer's place). You may assume that there is at least one path. All streets can be travelled in both directions.

    Input

    The first line contains the number of scenarios (city plans). For each city the number n of street crossings (1 <= n <= 1000) and number m of streets are given on the first line. The following m lines contain triples of integers specifying start and end crossing of the street and the maximum allowed weight, which is positive and not larger than 1000000. There will be at most one street between each pair of crossings.

    Output

    The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the maximum allowed weight that Hugo can transport to the customer. Terminate the output for the scenario with a blank line.

    Sample Input

    1
    3 3
    1 2 3
    1 3 4
    2 3 5
    

    Sample Output

    Scenario #1:
    4

    代码:

    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<queue>
    #include<vector>
    #include<algorithm>
    using namespace std;
    
    #define N 1100
    #define INF 0x3f3f3f3f3f
    
    int n, m, dist[N], G[N][N], v[N];
    
    int DIST(int S, int E)
    {
        dist[1]=0;
        v[1]=1;
    
        for(int i=1; i<=n; i++)
            dist[i] = G[1][i];
    
        for(int i=1; i<=n; i++)
        {
            int index=-1, MAX=-1;
    
            for(int j=1; j<=n; j++)
            {
                if(v[j]==0 && dist[j]>MAX)
                {
                    index = j, MAX = dist[j];
                }
            }
            v[index]=1;
    
            for(int j=1; j<=n; j++)
            {
                if(v[j]==0)
                {
                    int tmp = min(dist[index], G[index][j]);
                    if(tmp>dist[j])
                        dist[j]=tmp;
                }
            }
        }
        return dist[E];
    }
    
    int main()
    {
        int t, k=1;
    
        scanf("%d", &t);
    
        while(t--)
        {
            int a, b, w, i;
            scanf("%d%d", &n, &m);
    
            memset(v, 0, sizeof(v));
            memset(G, -1, sizeof(G));
    
            for(i=1; i<=m; i++)
            {
                scanf("%d%d%d", &a, &b, &w);
                G[a][b]=G[b][a]=max(G[a][b], w);
            }
    
            int ans = DIST(1, n);
    
            printf("Scenario #%d:
    ", k++);
            printf("%d
    
    ", ans);
        }
        return 0;
    }

    类似于 最大生成树

     

    #include <iostream>
    #include <cmath>
    #include <cstring>
    #include <cstdlib>
    #include <cstdio>
    #include <algorithm>
    #include <vector>
    #include <queue>
    #include <stack>
    using namespace std;
    const int INF = (1<<30)-1;
    #define min(a,b) (a<b?a:b)
    #define max(a,b) (a>b?a:b)
    #define N 1100
    
    
    int n, m, dist[N], G[N][N], vis[N];
    
    int prim()
    {
        int i, j, ans = INF;
    
        for(i=1; i<=n; i++)
            dist[i] = G[1][i];
        dist[1] = 0;
    
        memset(vis, 0, sizeof(vis));
        vis[1] = 1;
    
        for(i=1; i<=n; i++)
        {
            int index = 1, Max = -1;
            for(j=1; j<=n; j++)
            {
                if(!vis[j] && dist[j]>Max)
                {
                    Max = dist[j];
                    index = j;
                }
            }
    
            if(index==1) break;
    
            vis[index] = 1;
    
            ans = min(ans, Max);
    
            if(index==n) return ans;  ///当到达 n 点的时候结束
    
            for(j=1; j<=n; j++)
            {
                if(!vis[j] && dist[j]<G[index][j])
                   dist[j] = G[index][j];
            }
        }
    
        return ans;
    }
    
    
    int main()
    {
        int t, iCase=1;
        scanf("%d", &t);
        while(t--)
        {
            int i, u, v, x;
    
            scanf("%d%d", &n, &m);
    
            memset(G, -1, sizeof(G));
    
            for(i=1; i<=m; i++)
            {
                scanf("%d%d%d", &u, &v, &x);
                G[u][v] = G[v][u] = max(G[u][v], x);
            }
    
            printf("Scenario #%d:
    %d
    
    ", iCase++, prim());
        }
        return 0;
    }
    勿忘初心
  • 相关阅读:
    男人应该懂得的
    喝酒礼仪
    Office Web Apps开放测试
    SAP系统概要
    SAP实施成功的关键因素
    SAP企业实施的方法论
    ASAP
    ERP系统的组成部分
    去除word的保护
    实习周小结
  • 原文地址:https://www.cnblogs.com/YY56/p/4663438.html
Copyright © 2011-2022 走看看