zoukankan      html  css  js  c++  java
  • (最小生成树)QS Network -- ZOJ --1586

    链接:

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1586

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=82831#problem/E


    In the planet w-503 of galaxy cgb, there is a kind of intelligent creature named QS. QScommunicate with each other via networks. If two QS want to get connected, they need to buy two network adapters (one for each QS) and a segment of network cable. Please be advised that ONE NETWORK ADAPTER CAN ONLY BE USED IN A SINGLE CONNECTION.(ie. if a QS want to setup four connections, it needs to buy four adapters). In the procedure of communication, a QS broadcasts its message to all the QS it is connected with, the group of QS who receive the message broadcast the message to all the QS they connected with, the procedure repeats until all the QS's have received the message.

    A sample is shown below:


    A sample QS network, and QS A want to send a message.

    Step 1. QS A sends message to QS B and QS C;

    Step 2. QS B sends message to QS A ; QS C sends message to QS A and QS D;

    Step 3. the procedure terminates because all the QS received the message.

    Each QS has its favorate brand of network adapters and always buys the brand in all of its connections. Also the distance between QS vary. Given the price of each QS's favorate brand of network adapters and the price of cable between each pair of QS, your task is to write a program to determine the minimum cost to setup a QS network.


    Input

    The 1st line of the input contains an integer t which indicates the number of data sets.

    From the second line there are t data sets.

    In a single data set,the 1st line contains an interger n which indicates the number of QS.

    The 2nd line contains n integers, indicating the price of each QS's favorate network adapter.

    In the 3rd line to the n+2th line contain a matrix indicating the price of cable between ecah pair of QS.

    Constrains:

    all the integers in the input are non-negative and not more than 1000.


    Output

    for each data set,output the minimum cost in a line. NO extra empty lines needed.


    Sample Input

    1
    3
    10 20 30
    0 100 200
    100 0 300
    200 300 0


    Sample Output

    370

    代码:

    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    
    const int N = 1000;
    const int INF = 0xfffffff;
    
    
    int n;
    int J[N][N], dist[N];
    bool vis[N];
    
    int Prim()
    {
        int i, j, ans=0;
        dist[1]=0;
        memset(vis, 0, sizeof(vis));
        vis[1]=1;
    
        for(i=1; i<=n; i++)
            dist[i]=J[1][i];
    
        for(i=1; i<n; i++)
        {
            int index=1;
            int MIN=INF;
            for(j=1; j<=n; j++)
            {
                if(!vis[j] && dist[j]<MIN && dist[j])
                {
                    index=j;
                    MIN=dist[j];
                }
            }
            vis[index]=1;
            ans += MIN;
            for(j=1; j<=n; j++)
            {
                if(!vis[j] && dist[j]>J[index][j])
                    dist[j]=J[index][j];
            }
        }
        return ans;
    }
    
    int main ()
    {
        int t;
       scanf("%d", &t);
        while(t--)
        {
            int i, j, a, b[N];
            scanf("%d", &n);
    
            memset(J, 0, sizeof(J));
            memset(b, 0, sizeof(b));
    
            for(i=1; i<=n; i++)
            {
                scanf("%d", &a);
                b[i] = a;
            }
    
            for(i=1; i<=n; i++)
            for(j=1; j<=n; j++)
            {
                scanf("%d", &a);
                J[i][j] = a;
            }
    
            for(i=1; i<=n; i++)
            {
                for(j=1; j<=n; j++)
                J[i][j] += b[i]+b[j];
            }
    
            int ans=Prim();
    
            printf("%d
    ", ans);
        }
        return 0;
    }
    勿忘初心
  • 相关阅读:
    010 --- 第14章 观察者模式
    009 --- 第13章 建造者模式
    008 --- 第12章 外观模式
    007 --- 第10章 模板方法模式
    006 --- 第9章 原型模式
    redis lua 中keys[1] 和argv[1] 的理解
    redis 入门总结
    mysql 8.0 特性简单总结
    MySql事务隔离级别 浅见
    浅谈Java中的String、StringBuffer、StringBuilder
  • 原文地址:https://www.cnblogs.com/YY56/p/4735058.html
Copyright © 2011-2022 走看看