zoukankan      html  css  js  c++  java
  • (连通图 缩点 强联通分支)Popular Cows -- poj --2186

    http://poj.org/problem?id=2186

    Description

    Every cow's dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is 
    popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow. 

    Input

    * Line 1: Two space-separated integers, N and M 

    * Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular. 

    Output

    * Line 1: A single integer that is the number of cows who are considered popular by every other cow. 

    Sample Input

    3 3
    1 2
    2 1
    2 3
    

    Sample Output

    1

    先缩点(把强联通分量看为一个点), 判断出度为 0 的点有几个,如果大于 1 则输出 0, 否则输出 出度为零的点的个数

    代码:

    #include<cstdio>
    #include<cstring>
    #include<cstdlib>
    #include<iostream>
    #include<queue>
    #include<stack>
    #include<algorithm>
    using namespace std;
    
    #define N 50005
    
    struct node
    {
        int v, next;
    }a[N];
    
    int Head[N], cnt;
    int dfn[N], low[N], Time, bnt, belong[N];
    int Stack[N], InStack[N], top;
    
    void Init()
    {
        cnt = Time = bnt = top = 0;
        memset(Head, -1, sizeof(Head));
        memset(dfn, 0, sizeof(dfn));
        memset(low, 0, sizeof(low));
        memset(Stack, 0, sizeof(Stack));
        memset(InStack, 0, sizeof(InStack));
    }
    
    void Add(int u, int v)
    {
        a[cnt].v = v;
        a[cnt].next = Head[u];
        Head[u] = cnt++;
    }
    
    void Tarjar(int u)
    {
        int v;
        low[u] = dfn[u] = ++Time;
        InStack[u] = 1;
        Stack[top++] = u;
    
        for(int j=Head[u]; j!=-1; j=a[j].next)
        {
            v = a[j].v;
            if(!dfn[v])
            {
                Tarjar(v);
                low[u] = min(low[u], low[v]);
            }
            else if(InStack[v])
                low[u] = min(low[u], dfn[v]);
        }
    
        if(dfn[u]==low[u])
        {
            bnt++;
            do
            {
                v = Stack[--top];
                InStack[v] = 0;
                belong[v] = bnt;
            }while(u!=v);
        }
    }
    
    int main()
    {
        int n, m;
        while(scanf("%d%d", &n, &m)!=EOF)
        {
            int i, u, v;
    
            Init();
            for(i=1; i<=m; i++)
            {
                scanf("%d%d", &u, &v);
                Add(u, v);
            }
    
            for(i=1; i<=n; i++)
            {
                if(!dfn[i])
                Tarjar(i);
            }
    
            int Out[N]={0};
            for(int i=1; i<=n; i++)
            {
                for(int j=Head[i]; j!=-1; j=a[j].next)
                {
                    u = belong[i], v = belong[a[j].v];
                    if(u!=v)
                        Out[u]++;
                }
            }
    
            int flag=0, Index;
            for(i=1; i<=bnt; i++)
            {
                if(!Out[i])
                {
                    flag++;
                    Index = i;
                }
            }
    
            if(flag>1)
                printf("0
    ");
            else
            {
                int ans = 0;
                for(i=1; i<=n; i++)
                {
                    if(belong[i]==Index)
                        ans++;
                }
                printf("%d
    ", ans);
            }
        }
        return 0;
    }
    勿忘初心
  • 相关阅读:
    【AtCoder】ARC067 F
    【AtCoder】ARC095 E
    【BZOJ】4559: [JLoi2016]成绩比较 计数DP+排列组合+拉格朗日插值
    【CodeForces】961 F. k-substrings 字符串哈希+二分
    【CodeForces】961 G. Partitions 斯特林数
    【BZOJ】2310: ParkII 插头DP
    【BZOJ】2331: [SCOI2011]地板 插头DP
    webpack从0开始---(二)
    webpack从0开始---(一)
    前端基础知识(不应需要思考的知识点)三
  • 原文地址:https://www.cnblogs.com/YY56/p/4747685.html
Copyright © 2011-2022 走看看