链接:
http://vj.acmclub.cn/contest/view.action?cid=168#problem/B
Coprimes
问题描述
For given integer N (1<=N<=104) find amount of positive numbers not greater than N that coprime with N. Let us call two positive integers (say, A and B, for example) coprime if (and only if) their greatest common divisor is 1. (i.e. A and B are coprime iff gcd(A,B) = 1).
Input
Input file contains integer N.
Output
Write answer in output file.
Sample Input
9
Sample Output
6
初等数论里的欧拉公式:
欧拉φ函数:φ(n)是所有小于n的正整数里,和n互素的整数的个数。n是一个正整数。
欧拉证明了下面这个式子:
如果n的标准素因子分解式是p1^a1*p2^a2*……*pm^am,其中众pj(j=1,2,……,m)都是素数,而且两两不等。则有
φ(n)=n(1-1/p1)(1-1/p2)……(1-1/pm)
代码:
#include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <algorithm> #include <queue> using namespace std; #define INF 0x3f3f3f3f #define N 11000 int a[N], vis[N], cnt; void IN() { int i, j; cnt = 0; memset(a, 0, sizeof(a)); memset(vis, 0, sizeof(vis)); for(i=2; i<N; i++) { if(!vis[i]) { a[cnt++] = i; for(j=i+i; j<N; j+=i) vis[j] = 1; } } } int main() { int n; IN(); while(scanf("%d", &n)!=EOF) { int i=0, aa[N]={0}, bnt = 1, m; m = n; while(a[i]<=m) { if(m%a[i]==0) { m /= a[i]; if(a[i]!=aa[bnt-1]) aa[bnt++] = a[i]; } else i++; } for(i=1; i<bnt; i++) n = n-n/aa[i]; printf("%d ", n); } return 0; }
我醉了,其实可以这么简单
#include <iostream> #include <cstdio> #include <cstring> #include <cstdlib> #include <cmath> #include <algorithm> #include <queue> using namespace std; #define INF 0x3f3f3f3f #define N 11000 int gcd(int a, int b) { return b==0?a:gcd(b, a%b); } int main() { int n; while(scanf("%d", &n)!=EOF) { int sum = 0; for(int i=1; i<=n; i++) { if(gcd(i, n)==1) sum ++; } printf("%d ", sum); } return 0; }