zoukankan      html  css  js  c++  java
  • (01背包 第k优解) Bone Collector II(hdu 2639)

     
     
     
    Problem Description
    The title of this problem is familiar,isn't it?yeah,if you had took part in the "Rookie Cup" competition,you must have seem this title.If you haven't seen it before,it doesn't matter,I will give you a link:

    Here is the link:http://acm.hdu.edu.cn/showproblem.php?pid=2602

    Today we are not desiring the maximum value of bones,but the K-th maximum value of the bones.NOTICE that,we considerate two ways that get the same value of bones are the same.That means,it will be a strictly decreasing sequence from the 1st maximum , 2nd maximum .. to the K-th maximum.

    If the total number of different values is less than K,just ouput 0.
     

    Input
    The first line contain a integer T , the number of cases.
    Followed by T cases , each case three lines , the first line contain two integer N , V, K(N <= 100 , V <= 1000 , K <= 30)representing the number of bones and the volume of his bag and the K we need. And the second line contain N integers representing the value of each bone. The third line contain N integers representing the volume of each bone.
     

    Output
    One integer per line representing the K-th maximum of the total value (this number will be less than 231).
     

    Sample Input
    3 5 10 2 1 2 3 4 5 5 4 3 2 1 5 10 12 1 2 3 4 5 5 4 3 2 1 5 10 16 1 2 3 4 5 5 4 3 2 1
     

    Sample Output
    12 2 0
     
    思路:
    对于求最优解的情况,我们对每一种状态只保存了该状态下的最优解,忽略了其他解,进而实现状态之间的转移,而对于求第K优解的情况呢?其实只需要保存每一种状态下的前K优解,从这K个状态进行状态间的转移,同时去重,保存当前状态的K优解即可。(感觉时间复杂度还是挺高的)
     
     
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <queue>
    #include <vector>
    #include <map>
    #include <algorithm>
    using namespace std;
    
    const int N = 6600;
    const int INF = 0x3fffffff;
    const long long MOD = 1000000007;
    typedef long long LL;
    #define met(a,b) (memset(a,b,sizeof(a)))
    
    int dp[N][35];
    int a[N], b[N], c[N];
    ///dp[j][k] 代表容量为 j 的背包的第 k+1 优解
    
    int cmp(int a, int b)
    {
        return a > b;
    }
    
    int main()
    {
        int T;
        scanf("%d", &T);
        while(T--)
        {
            int i, j, k, n, v;
    
            scanf("%d%d%d", &n, &v, &k);
    
            met(a, 0);
            met(b, 0);
            met(dp, 0);
    
            for(i=1; i<=n; i++)
                scanf("%d", &a[i]);
            for(i=1; i<=n; i++)
                scanf("%d", &b[i]);
    
            for(i=1; i<=n; i++)
            {
                for(j=v; j>=b[i]; j--)
                {
                    int w = 0;
                    for(int z=0; z<k; z++) ///每次只需考虑前 k 优解的状态转换即可
                    {
                        c[w++] = dp[j][z];
                        c[w++] = dp[j-b[i]][z]+a[i];
                    }
    
                    sort(c, c+w, cmp);
                    w = unique(c, c+w) - c; 
                    for(int t=0; t<k && t<w; t++) ///t的范围, 既不能大于 k,也不能大于 w
                        dp[j][t] = c[t];
                }
            }
    
            printf("%d
    ", dp[v][k-1]);
    
        }
        return 0;
    }
  • 相关阅读:
    一文读懂比特币的软分叉
    区块链的七阶段位,你属于哪一段?
    总价值超26.7亿美元的5个最富有比特币地址汇总
    智能合约的沙箱机制是什么?
    区块链的核心技术是什么?
    区块链和比特币常见的七大误区
    矿机论斤卖?夸大其词
    比特币跌破5000美元的三大影响因素
    微软Azure区块链开发工具包三大功能详解
    各大自媒体平台的收益情况汇总
  • 原文地址:https://www.cnblogs.com/YY56/p/5476797.html
Copyright © 2011-2022 走看看