zoukankan      html  css  js  c++  java
  • Help on module matplotlib.cm in matplotlib:

    Help on module matplotlib.cm in matplotlib:

    NAME
    matplotlib.cm

    FILE
    d:programdataanaconda2libsite-packagesmatplotlibcm.py

    DESCRIPTION
    This module provides a large set of colormaps, functions for
    registering new colormaps and for getting a colormap by name,
    and a mixin class for adding color mapping functionality.

    CLASSES
    __builtin__.object
    ScalarMappable

    class ScalarMappable(__builtin__.object)
    | This is a mixin class to support scalar data to RGBA mapping.
    | The ScalarMappable makes use of data normalization before returning
    | RGBA colors from the given colormap.
    |
    | Methods defined here:
    |
    | __init__(self, norm=None, cmap=None)
    | Parameters
    | ----------
    | norm : :class:`matplotlib.colors.Normalize` instance
    | The normalizing object which scales data, typically into the
    | interval ``[0, 1]``.
    | If *None*, *norm* defaults to a *colors.Normalize* object which
    | initializes its scaling based on the first data processed.
    | cmap : str or :class:`~matplotlib.colors.Colormap` instance
    | The colormap used to map normalized data values to RGBA colors.
    |
    | add_checker(self, checker)
    | Add an entry to a dictionary of boolean flags
    | that are set to True when the mappable is changed.
    |
    | autoscale(self)
    | Autoscale the scalar limits on the norm instance using the
    | current array
    |
    | autoscale_None(self)
    | Autoscale the scalar limits on the norm instance using the
    | current array, changing only limits that are None
    |
    | changed(self)
    | Call this whenever the mappable is changed to notify all the
    | callbackSM listeners to the 'changed' signal
    |
    | check_update(self, checker)
    | If mappable has changed since the last check,
    | return True; else return False
    |
    | get_array(self)
    | Return the array
    |
    | get_clim(self)
    | return the min, max of the color limits for image scaling
    |
    | get_cmap(self)
    | return the colormap
    |
    | set_array(self, A)
    | Set the image array from numpy array *A*.
    |
    | ..
    | ACCEPTS: ndarray
    |
    | Parameters
    | ----------
    | A : ndarray
    |
    | set_clim(self, vmin=None, vmax=None)
    | set the norm limits for image scaling; if *vmin* is a length2
    | sequence, interpret it as ``(vmin, vmax)`` which is used to
    | support setp
    |
    | ACCEPTS: a length 2 sequence of floats
    |
    | set_cmap(self, cmap)
    | set the colormap for luminance data
    |
    | ACCEPTS: a colormap or registered colormap name
    |
    | set_norm(self, norm)
    | Set the normalization instance.
    |
    | ..
    | ACCEPTS: `~.Normalize`
    |
    | Parameters
    | ----------
    | norm : `~.Normalize`
    |
    | to_rgba(self, x, alpha=None, bytes=False, norm=True)
    | Return a normalized rgba array corresponding to *x*.
    |
    | In the normal case, *x* is a 1-D or 2-D sequence of scalars, and
    | the corresponding ndarray of rgba values will be returned,
    | based on the norm and colormap set for this ScalarMappable.
    |
    | There is one special case, for handling images that are already
    | rgb or rgba, such as might have been read from an image file.
    | If *x* is an ndarray with 3 dimensions,
    | and the last dimension is either 3 or 4, then it will be
    | treated as an rgb or rgba array, and no mapping will be done.
    | The array can be uint8, or it can be floating point with
    | values in the 0-1 range; otherwise a ValueError will be raised.
    | If it is a masked array, the mask will be ignored.
    | If the last dimension is 3, the *alpha* kwarg (defaulting to 1)
    | will be used to fill in the transparency. If the last dimension
    | is 4, the *alpha* kwarg is ignored; it does not
    | replace the pre-existing alpha. A ValueError will be raised
    | if the third dimension is other than 3 or 4.
    |
    | In either case, if *bytes* is *False* (default), the rgba
    | array will be floats in the 0-1 range; if it is *True*,
    | the returned rgba array will be uint8 in the 0 to 255 range.
    |
    | If norm is False, no normalization of the input data is
    | performed, and it is assumed to be in the range (0-1).
    |
    | ----------------------------------------------------------------------
    | Data descriptors defined here:
    |
    | __dict__
    | dictionary for instance variables (if defined)
    |
    | __weakref__
    | list of weak references to the object (if defined)

    FUNCTIONS
    get_cmap(name=None, lut=None)
    Get a colormap instance, defaulting to rc values if *name* is None.

    Colormaps added with :func:`register_cmap` take precedence over
    built-in colormaps.

    If *name* is a :class:`matplotlib.colors.Colormap` instance, it will be
    returned.

    If *lut* is not None it must be an integer giving the number of
    entries desired in the lookup table, and *name* must be a standard
    mpl colormap name.

    register_cmap(name=None, cmap=None, data=None, lut=None)
    Add a colormap to the set recognized by :func:`get_cmap`.

    It can be used in two ways::

    register_cmap(name='swirly', cmap=swirly_cmap)

    register_cmap(name='choppy', data=choppydata, lut=128)

    In the first case, *cmap* must be a :class:`matplotlib.colors.Colormap`
    instance. The *name* is optional; if absent, the name will
    be the :attr:`~matplotlib.colors.Colormap.name` attribute of the *cmap*.

    In the second case, the three arguments are passed to
    the :class:`~matplotlib.colors.LinearSegmentedColormap` initializer,
    and the resulting colormap is registered.

    revcmap(data)
    Can only handle specification *data* in dictionary format.

    DATA
    Accent = <matplotlib.colors.ListedColormap object>
    Accent_r = <matplotlib.colors.ListedColormap object>
    Blues = <matplotlib.colors.LinearSegmentedColormap object>
    Blues_r = <matplotlib.colors.LinearSegmentedColormap object>
    BrBG = <matplotlib.colors.LinearSegmentedColormap object>
    BrBG_r = <matplotlib.colors.LinearSegmentedColormap object>
    BuGn = <matplotlib.colors.LinearSegmentedColormap object>
    BuGn_r = <matplotlib.colors.LinearSegmentedColormap object>
    BuPu = <matplotlib.colors.LinearSegmentedColormap object>
    BuPu_r = <matplotlib.colors.LinearSegmentedColormap object>
    CMRmap = <matplotlib.colors.LinearSegmentedColormap object>
    CMRmap_r = <matplotlib.colors.LinearSegmentedColormap object>
    Dark2 = <matplotlib.colors.ListedColormap object>
    Dark2_r = <matplotlib.colors.ListedColormap object>
    GnBu = <matplotlib.colors.LinearSegmentedColormap object>
    GnBu_r = <matplotlib.colors.LinearSegmentedColormap object>
    Greens = <matplotlib.colors.LinearSegmentedColormap object>
    Greens_r = <matplotlib.colors.LinearSegmentedColormap object>
    Greys = <matplotlib.colors.LinearSegmentedColormap object>
    Greys_r = <matplotlib.colors.LinearSegmentedColormap object>
    LUTSIZE = 256
    OrRd = <matplotlib.colors.LinearSegmentedColormap object>
    OrRd_r = <matplotlib.colors.LinearSegmentedColormap object>
    Oranges = <matplotlib.colors.LinearSegmentedColormap object>
    Oranges_r = <matplotlib.colors.LinearSegmentedColormap object>
    PRGn = <matplotlib.colors.LinearSegmentedColormap object>
    PRGn_r = <matplotlib.colors.LinearSegmentedColormap object>
    Paired = <matplotlib.colors.ListedColormap object>
    Paired_r = <matplotlib.colors.ListedColormap object>
    Pastel1 = <matplotlib.colors.ListedColormap object>
    Pastel1_r = <matplotlib.colors.ListedColormap object>
    Pastel2 = <matplotlib.colors.ListedColormap object>
    Pastel2_r = <matplotlib.colors.ListedColormap object>
    PiYG = <matplotlib.colors.LinearSegmentedColormap object>
    PiYG_r = <matplotlib.colors.LinearSegmentedColormap object>
    PuBu = <matplotlib.colors.LinearSegmentedColormap object>
    PuBuGn = <matplotlib.colors.LinearSegmentedColormap object>
    PuBuGn_r = <matplotlib.colors.LinearSegmentedColormap object>
    PuBu_r = <matplotlib.colors.LinearSegmentedColormap object>
    PuOr = <matplotlib.colors.LinearSegmentedColormap object>
    PuOr_r = <matplotlib.colors.LinearSegmentedColormap object>
    PuRd = <matplotlib.colors.LinearSegmentedColormap object>
    PuRd_r = <matplotlib.colors.LinearSegmentedColormap object>
    Purples = <matplotlib.colors.LinearSegmentedColormap object>
    Purples_r = <matplotlib.colors.LinearSegmentedColormap object>
    RdBu = <matplotlib.colors.LinearSegmentedColormap object>
    RdBu_r = <matplotlib.colors.LinearSegmentedColormap object>
    RdGy = <matplotlib.colors.LinearSegmentedColormap object>
    RdGy_r = <matplotlib.colors.LinearSegmentedColormap object>
    RdPu = <matplotlib.colors.LinearSegmentedColormap object>
    RdPu_r = <matplotlib.colors.LinearSegmentedColormap object>
    RdYlBu = <matplotlib.colors.LinearSegmentedColormap object>
    RdYlBu_r = <matplotlib.colors.LinearSegmentedColormap object>
    RdYlGn = <matplotlib.colors.LinearSegmentedColormap object>
    RdYlGn_r = <matplotlib.colors.LinearSegmentedColormap object>
    Reds = <matplotlib.colors.LinearSegmentedColormap object>
    Reds_r = <matplotlib.colors.LinearSegmentedColormap object>
    Set1 = <matplotlib.colors.ListedColormap object>
    Set1_r = <matplotlib.colors.ListedColormap object>
    Set2 = <matplotlib.colors.ListedColormap object>
    Set2_r = <matplotlib.colors.ListedColormap object>
    Set3 = <matplotlib.colors.ListedColormap object>
    Set3_r = <matplotlib.colors.ListedColormap object>
    Spectral = <matplotlib.colors.LinearSegmentedColormap object>
    Spectral_r = <matplotlib.colors.LinearSegmentedColormap object>
    Vega10 = <matplotlib.colors.ListedColormap object>
    Vega10_r = <matplotlib.colors.ListedColormap object>
    Vega20 = <matplotlib.colors.ListedColormap object>
    Vega20_r = <matplotlib.colors.ListedColormap object>
    Vega20b = <matplotlib.colors.ListedColormap object>
    Vega20b_r = <matplotlib.colors.ListedColormap object>
    Vega20c = <matplotlib.colors.ListedColormap object>
    Vega20c_r = <matplotlib.colors.ListedColormap object>
    Wistia = <matplotlib.colors.LinearSegmentedColormap object>
    Wistia_r = <matplotlib.colors.LinearSegmentedColormap object>
    YlGn = <matplotlib.colors.LinearSegmentedColormap object>
    YlGnBu = <matplotlib.colors.LinearSegmentedColormap object>
    YlGnBu_r = <matplotlib.colors.LinearSegmentedColormap object>
    YlGn_r = <matplotlib.colors.LinearSegmentedColormap object>
    YlOrBr = <matplotlib.colors.LinearSegmentedColormap object>
    YlOrBr_r = <matplotlib.colors.LinearSegmentedColormap object>
    YlOrRd = <matplotlib.colors.LinearSegmentedColormap object>
    YlOrRd_r = <matplotlib.colors.LinearSegmentedColormap object>
    absolute_import = _Feature((2, 5, 0, 'alpha', 1), (3, 0, 0, 'alpha', 0...
    afmhot = <matplotlib.colors.LinearSegmentedColormap object>
    afmhot_r = <matplotlib.colors.LinearSegmentedColormap object>
    autumn = <matplotlib.colors.LinearSegmentedColormap object>
    autumn_r = <matplotlib.colors.LinearSegmentedColormap object>
    binary = <matplotlib.colors.LinearSegmentedColormap object>
    binary_r = <matplotlib.colors.LinearSegmentedColormap object>
    bone = <matplotlib.colors.LinearSegmentedColormap object>
    bone_r = <matplotlib.colors.LinearSegmentedColormap object>
    brg = <matplotlib.colors.LinearSegmentedColormap object>
    brg_r = <matplotlib.colors.LinearSegmentedColormap object>
    bwr = <matplotlib.colors.LinearSegmentedColormap object>
    bwr_r = <matplotlib.colors.LinearSegmentedColormap object>
    cmap_d = {u'Spectral': <matplotlib.colors.LinearSegmented...tlib.color...
    cmapname = u'afmhot'
    cmaps_listed = {'inferno': <matplotlib.colors.ListedColormap object>, ...
    cool = <matplotlib.colors.LinearSegmentedColormap object>
    cool_r = <matplotlib.colors.LinearSegmentedColormap object>
    coolwarm = <matplotlib.colors.LinearSegmentedColormap object>
    coolwarm_r = <matplotlib.colors.LinearSegmentedColormap object>
    copper = <matplotlib.colors.LinearSegmentedColormap object>
    copper_r = <matplotlib.colors.LinearSegmentedColormap object>
    cubehelix = <matplotlib.colors.LinearSegmentedColormap object>
    cubehelix_r = <matplotlib.colors.LinearSegmentedColormap object>
    datad = {u'Spectral': ((0.6196078431372549, 0.0039215686...830>, u'red...
    division = _Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192...
    flag = <matplotlib.colors.LinearSegmentedColormap object>
    flag_r = <matplotlib.colors.LinearSegmentedColormap object>
    gist_earth = <matplotlib.colors.LinearSegmentedColormap object>
    gist_earth_r = <matplotlib.colors.LinearSegmentedColormap object>
    gist_gray = <matplotlib.colors.LinearSegmentedColormap object>
    gist_gray_r = <matplotlib.colors.LinearSegmentedColormap object>
    gist_heat = <matplotlib.colors.LinearSegmentedColormap object>
    gist_heat_r = <matplotlib.colors.LinearSegmentedColormap object>
    gist_ncar = <matplotlib.colors.LinearSegmentedColormap object>
    gist_ncar_r = <matplotlib.colors.LinearSegmentedColormap object>
    gist_rainbow = <matplotlib.colors.LinearSegmentedColormap object>
    gist_rainbow_r = <matplotlib.colors.LinearSegmentedColormap object>
    gist_stern = <matplotlib.colors.LinearSegmentedColormap object>
    gist_stern_r = <matplotlib.colors.LinearSegmentedColormap object>
    gist_yarg = <matplotlib.colors.LinearSegmentedColormap object>
    gist_yarg_r = <matplotlib.colors.LinearSegmentedColormap object>
    gnuplot = <matplotlib.colors.LinearSegmentedColormap object>
    gnuplot2 = <matplotlib.colors.LinearSegmentedColormap object>
    gnuplot2_r = <matplotlib.colors.LinearSegmentedColormap object>
    gnuplot_r = <matplotlib.colors.LinearSegmentedColormap object>
    gray = <matplotlib.colors.LinearSegmentedColormap object>
    gray_r = <matplotlib.colors.LinearSegmentedColormap object>
    hot = <matplotlib.colors.LinearSegmentedColormap object>
    hot_r = <matplotlib.colors.LinearSegmentedColormap object>
    hsv = <matplotlib.colors.LinearSegmentedColormap object>
    hsv_r = <matplotlib.colors.LinearSegmentedColormap object>
    inferno = <matplotlib.colors.ListedColormap object>
    inferno_r = <matplotlib.colors.ListedColormap object>
    jet = <matplotlib.colors.LinearSegmentedColormap object>
    jet_r = <matplotlib.colors.LinearSegmentedColormap object>
    magma = <matplotlib.colors.ListedColormap object>
    magma_r = <matplotlib.colors.ListedColormap object>
    nipy_spectral = <matplotlib.colors.LinearSegmentedColormap object>
    nipy_spectral_r = <matplotlib.colors.LinearSegmentedColormap object>
    ocean = <matplotlib.colors.LinearSegmentedColormap object>
    ocean_r = <matplotlib.colors.LinearSegmentedColormap object>
    pink = <matplotlib.colors.LinearSegmentedColormap object>
    pink_r = <matplotlib.colors.LinearSegmentedColormap object>
    plasma = <matplotlib.colors.ListedColormap object>
    plasma_r = <matplotlib.colors.ListedColormap object>
    print_function = _Feature((2, 6, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0)...
    prism = <matplotlib.colors.LinearSegmentedColormap object>
    prism_r = <matplotlib.colors.LinearSegmentedColormap object>
    rainbow = <matplotlib.colors.LinearSegmentedColormap object>
    rainbow_r = <matplotlib.colors.LinearSegmentedColormap object>
    seismic = <matplotlib.colors.LinearSegmentedColormap object>
    seismic_r = <matplotlib.colors.LinearSegmentedColormap object>
    spectral = <matplotlib.colors.LinearSegmentedColormap object>
    spectral_r = <matplotlib.colors.LinearSegmentedColormap object>
    spring = <matplotlib.colors.LinearSegmentedColormap object>
    spring_r = <matplotlib.colors.LinearSegmentedColormap object>
    summer = <matplotlib.colors.LinearSegmentedColormap object>
    summer_r = <matplotlib.colors.LinearSegmentedColormap object>
    tab10 = <matplotlib.colors.ListedColormap object>
    tab10_r = <matplotlib.colors.ListedColormap object>
    tab20 = <matplotlib.colors.ListedColormap object>
    tab20_r = <matplotlib.colors.ListedColormap object>
    tab20b = <matplotlib.colors.ListedColormap object>
    tab20b_r = <matplotlib.colors.ListedColormap object>
    tab20c = <matplotlib.colors.ListedColormap object>
    tab20c_r = <matplotlib.colors.ListedColormap object>
    terrain = <matplotlib.colors.LinearSegmentedColormap object>
    terrain_r = <matplotlib.colors.LinearSegmentedColormap object>
    unicode_literals = _Feature((2, 6, 0, 'alpha', 2), (3, 0, 0, 'alpha', ...
    viridis = <matplotlib.colors.ListedColormap object>
    viridis_r = <matplotlib.colors.ListedColormap object>
    winter = <matplotlib.colors.LinearSegmentedColormap object>
    winter_r = <matplotlib.colors.LinearSegmentedColormap object>

  • 相关阅读:
    VMware下桥接设置
    Silverlight 样式的灵活使用
    Silverlight网页打开后马上崩溃,“白屏”,而且毫无提示
    Silverlight中字典的使用
    WEBGIS网页崩溃问题分析
    MDB数据类型注意事项
    使用浏览器开发着工具查看地图或影响的请求信息
    ArcGIS出图调整
    启动aspx文件错误
    hdu3555(数位DP dfs/递推)
  • 原文地址:https://www.cnblogs.com/YingxuanZHANG/p/8808077.html
Copyright © 2011-2022 走看看