zoukankan      html  css  js  c++  java
  • SCUT

    https://scut.online/p/354
    跟多项式一点关系都没有。
    注意到其实两个多项式在1处求值,那么就是他们的系数加起来。

    列一列发现系数就是n以内两两求gcd的值,还自动把0去掉了。

    那么就是
    (sumlimits_{i=1}^{n}sumlimits_{i=1}^{n}gcd(i^2,j^2))

    这种情况就要枚举g但是为了方便我们也是枚举g而不是g平方
    (sumlimits_{g=1}^{n}g^2sumlimits_{i=1}^{n}sumlimits_{i=1}^{n}[gcd(i^2,j^2)==g^2])

    列一列gcd的分解式发现其实可以把平方约分掉
    (sumlimits_{g=1}^{n}g^2sumlimits_{i=1}^{n}sumlimits_{i=1}^{n}[gcd(i,j)==g])

    二话不说除以g
    (sumlimits_{g=1}^{n}g^2sumlimits_{i=1}^{lfloorfrac{n}{g} floor}sumlimits_{i=1}^{lfloorfrac{n}{g} floor}[gcd(i,j)==1])

    套上反演
    (sumlimits_{g=1}^{n}g^2sumlimits_{i=1}^{lfloorfrac{n}{g} floor}sumlimits_{i=1}^{lfloorfrac{n}{g} floor}sumlimits_{k|gcd(i,j)}mu(k))
    (sumlimits_{g=1}^{n}g^2sumlimits_{k=1}^{n}mu(k){lfloorfrac{n}{gk} floor}^{2})

    枚举T
    (sumlimits_{T=1}^{n}{lfloorfrac{n}{T} floor}^{2}sumlimits_{g|T}g^2mu(frac{T}{g}))

    假如搞得出后面那个狄利克雷卷积的前缀和,那么可以分块回答,看看复杂度刚刚够的样子。

    后面那个是
    (sumlimits_{g|T}g^2mu(frac{T}{g}))

    也就是
    (id^2*mu)

    嗷神提示卷一个东西,恒等函数(I(n)=1)
    ((id^2*mu)*I)

    结合律
    (id^2*(mu*I))

    后面那个就是
    (id^2*(epsilon))

    这个东西展开就是
    (sumlimits_{g|T}g^2[frac{T}{g}==1])
    (T^2)

    也就是说卷积之后的前缀和是(s_2),而恒等函数的前缀和就是(s_0)

    上一波杜教筛就可以了

    测试发现unorder_map和cc_hash_table差异非常小。

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    
    inline ll read() {
        ll x = 0;
        //int f = 0;
        char c;
        do {
            c = getchar();
            /*if(c == '-')
                f = 1;*/
        } while(c < '0' || c > '9');
        do {
            x = (x << 3) + (x << 1) + c - '0';
            c = getchar();
        } while(c >= '0' && c <= '9');
        //return f ? -x : x;
        return x;
    }
    
    inline void _write(int x) {
        if(x > 9)
            _write(x / 10);
        putchar(x % 10 + '0');
    }
    
    inline void write(int x) {
        if(x < 0) {
            putchar('-');
            x = -x;
        }
        _write(x);
        putchar('
    ');
    }
    
    /*void TestCase(int ti);
    
    int main() {
    #ifdef Yinku
        freopen("Yinku.in", "r", stdin);
        //freopen("Yinku.out","w",stdout);
    #endif // Yinku
        int T = 1;
        for(int ti = 1; ti <= T; ti++)
            TestCase(ti);
    }*/
    
    /*---  ---*/
    
    const int mod = 998244353;
    const int inv2 = (mod + 1) >> 1;
    const int MAXN = 1.5e7;
    
    int pri[MAXN + 1];
    int &pritop = pri[0];
    int f[MAXN + 1];
    int pk[MAXN + 1];
    
    void sieve(int n = MAXN) {
        pk[1] = 1;
        f[1] = 1;
        for(int i = 2; i <= n; i++) {
            if(!pri[i]) {
                pri[++pritop] = i;
                pk[i] = i;
                f[i] = (1ll * i * i - 1ll) % mod;
            }
            for(int j = 1; j <= pritop; j++) {
                int &p = pri[j];
                int t = i * p;
                if(t > n)
                    break;
                pri[t] = 1;
                if(i % p) {
                    pk[t] = p;
                    f[t] = 1ll * f[i] * f[p] % mod;
                } else {
                    pk[t] = pk[i] * p;
                    if(pk[t] == t) {
                        f[t] = 1ll * f[i] * p % mod * p % mod;
                    } else {
                        f[t] = 1ll * f[t / pk[t]] * f[pk[t]] % mod;
                    }
                    break;
                }
            }
        }
        for(int i = 1; i <= n; i++) {
            f[i] = f[i - 1] + f[i];
            if(f[i] >= mod)
                f[i] -= mod;
        }
    }
    
    /*inline int qpow(ll x, int n) {
        ll res = 1;
        while(n) {
            if(n & 1) {
                res *= x;
                if(res >= mod)
                    res %= mod;
            }
            x *= x;
            if(x >= mod)
                x %= mod;
            n >>= 1;
        }
        return res;
    }*/
    
    const int inv6 = 166374059; //qpow(6, mod - 2);
    
    inline int s2(ll n) {
        if(n >= mod)
            n %= mod;
        ll tmp = n * (n + 1);
        if(tmp >= mod)
            tmp %= mod;
        tmp *= n * 2 + 1 ;
        if(tmp >= mod)
            tmp %= mod;
        tmp *= inv6;
        if(tmp >= mod)
            tmp %= mod;
        return tmp;
    }
    
    unordered_map<ll, int> Sf;
    
    inline int F(ll n) {
        if(n <= MAXN)
            return f[n];
        if(Sf.count(n))
            return Sf[n];
        ll ret = s2(n);
        for(ll l = 2, r; l <= n; l = r + 1) {
            ll t = n / l;
            r = n / t;
            ret -= (r - l + 1) % mod * F(t) % mod;
            if(ret < 0)
                ret += mod;
        }
        return Sf[n] = ret;
    }
    
    inline int S(ll n) {
        ll res = 0;
        for(ll l = 1, r; l <= n; l = r + 1) {
            ll t = n / l;
            r = n / t;
            ll tmp = F(r) - F(l - 1);
            if(tmp < 0)
                tmp += mod;
            if(t >= mod)
                t %= mod;
            t *= t;
            if(t >= mod)
                t %= mod;
            tmp *= t;
            if(tmp >= mod)
                tmp %= mod;
            res += tmp;
            if(res >= mod)
                res -= mod;
        }
        return res;
    }
    
    int main() {
    #ifdef Yinku
        freopen("Yinku.in", "r", stdin);
        //freopen("Yinku.out","w",stdout);
    #endif // Yinku
        sieve();
        int T = read();
        while(T--) {
            write(S(read()));
        }
    }
    

    但是好像发现一个问题,别人都是欧拉函数的?
    (sumlimits_{g=1}^{n}g^2sumlimits_{i=1}^{lfloorfrac{n}{g} floor}sumlimits_{i=1}^{lfloorfrac{n}{g} floor}[gcd(i,j)==1])

    这里内部记为
    (S(n)=sumlimits_{i=1}^{n}sumlimits_{i=1}^{n}[gcd(i,j)==1])

    n以内互质对的个数?那么枚举较大的那个,小的那个要和他互质,就是欧拉函数,大小互换多了一倍,其中(1,1)重复去掉一个
    (S(n)=-1+2sumlimits_{i=1}^{n}varphi(i))

    所以原式就是
    (sumlimits_{g=1}^{n}g^2S(lfloorfrac{n}{g} floor))

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    
    inline ll read() {
        ll x = 0;
        //int f = 0;
        char c;
        do {
            c = getchar();
            /*if(c == '-')
                f = 1;*/
        } while(c < '0' || c > '9');
        do {
            x = (x << 3) + (x << 1) + c - '0';
            c = getchar();
        } while(c >= '0' && c <= '9');
        //return f ? -x : x;
        return x;
    }
    
    inline void _write(int x) {
        if(x > 9)
            _write(x / 10);
        putchar(x % 10 + '0');
    }
    
    inline void write(int x) {
        if(x < 0) {
            putchar('-');
            x = -x;
        }
        _write(x);
        putchar('
    ');
    }
    
    /*void TestCase(int ti);
    
    int main() {
    #ifdef Yinku
        freopen("Yinku.in", "r", stdin);
        //freopen("Yinku.out","w",stdout);
    #endif // Yinku
        int T = 1;
        for(int ti = 1; ti <= T; ti++)
            TestCase(ti);
    }*/
    
    /*---  ---*/
    
    const int mod = 998244353;
    const int inv2 = (mod + 1) >> 1;
    const int MAXN = 1.6e7;
    
    int pri[MAXN + 1];
    int &pritop = pri[0];
    int phi[MAXN + 1];
    
    void sieve(int n = MAXN) {
        phi[1] = 1;
        for(int i = 2; i <= n; i++) {
            if(!pri[i]) {
                pri[++pritop] = i;
                phi[i] = i - 1;
            }
            for(int j = 1; j <= pritop; j++) {
                int &p = pri[j];
                int t = i * p;
                if(t > n)
                    break;
                pri[t] = 1;
                if(i % p) {
                    phi[t] = phi[i] * phi[p];
                } else {
                    phi[t] = phi[i] * p;
                    break;
                }
            }
        }
        for(int i = 1; i <= n; i++) {
            phi[i] += phi[i - 1];
            if(phi[i] >= mod)
                phi[i] -= mod;
        }
    }
    
    /*inline int qpow(ll x, int n) {
        ll res = 1;
        while(n) {
            if(n & 1) {
                res *= x;
                if(res >= mod)
                    res %= mod;
            }
            x *= x;
            if(x >= mod)
                x %= mod;
            n >>= 1;
        }
        return res;
    }*/
    
    
    inline int s1(ll n) {
        if(n >= mod)
            n %= mod;
        return n * (n + 1) % mod * inv2 % mod;
    }
    
    const int inv6 = 166374059; //qpow(6, mod - 2);
    inline int s2(ll n) {
        if(n >= mod)
            n %= mod;
        ll tmp = n * (n + 1);
        if(tmp >= mod)
            tmp %= mod;
        tmp *= n * 2 + 1 ;
        if(tmp >= mod)
            tmp %= mod;
        tmp *= inv6;
        if(tmp >= mod)
            tmp %= mod;
        return tmp;
    }
    
    unordered_map<ll, int> Sphi;
    
    inline int Phi(ll n) {
        if(n <= MAXN)
            return phi[n];
        if(Sphi.count(n))
            return Sphi[n];
        int ret = s1(n);
        for(ll l = 2, r, t; l <= n; l = r + 1) {
            t = n / l;
            r = n / t;
            ret -= (r - l + 1) % mod * Phi(t) % mod;
            if(ret < 0)
                ret += mod;
        }
        return Sphi[n] = ret;
    }
    
    inline int S(ll n) {
        return (2 * Phi(n) - 1) % mod;
    }
    
    inline int Ans(ll n) {
        int res = 0;
        for(ll l = 1, r, t; l <= n; l = r + 1) {
            t = n / l;
            r = n / t;
            ll tmp = s2(r) - s2(l - 1);
            if(tmp < 0)
                tmp += mod;
            tmp *= S(t);
            if(tmp >= mod)
                tmp %= mod;
            res += tmp;
            if(res >= mod)
                res -= mod;
        }
        return res;
    }
    
    int main() {
    #ifdef Yinku
        freopen("Yinku.in", "r", stdin);
        //freopen("Yinku.out","w",stdout);
    #endif // Yinku
        sieve();
        int T = read();
        while(T--) {
            write(Ans(read()));
        }
    }
    
  • 相关阅读:
    python--网络通信协议
    python--网络编程之socket
    python--内置函数03
    在Mapper中sql语句字段与实体类属性名字之间的关系
    网站引入QQ登录
    子类继承父类时构造函数的相关问题
    java中字符串比较的问题
    Mybatis中一对多与多对一的配置
    Spring中的依赖注入(1)
    P1618 三连击(升级版)
  • 原文地址:https://www.cnblogs.com/Yinku/p/11053309.html
Copyright © 2011-2022 走看看