zoukankan      html  css  js  c++  java
  • 2019 Multi-University Training Contest 1

    题目连接:
    http://acm.hdu.edu.cn/showproblem.php?pid=6589

    题解连接:
    https://www.cnblogs.com/xusirui/p/11229450.html
    https://www.cnblogs.com/FST-stay-night/p/11227505.html

    NTT来自:
    https://www.cnblogs.com/Sakits/p/8416918.html

    题解1说,要先暴力模拟看看规律。

    一个很明显的直觉是可以看看最终的序列由哪些a[i]贡献而成。但是我连暴力都不会写啊。

    还不如手推:
    当x为1时:
    观察求前缀和的过程

    0次: a[0], a[1], a[2], a[3]

    1次: a[0], a[1]+a[0], a[2]+a[1]+a[0], a[3]+a[2]+a[1]+a[0]

    2次: a[0], a[1]+2a[0], a[2]+2a[1]+3a[0], a[3]+2a[2]+3a[1]+4a[0]

    3次: a[0], a[1]+3a[0], a[2]+3a[1]+6a[0], a[3]+3a[2]+6a[1]+10a[0]

    4次: a[0], a[1]+4a[0], a[2]+4a[1]+10a[0], a[3]+4a[2]+10a[1]+20a[0]

    每一项前面的系数看起来有什么规律?
    0次的时候就跳过吧……
    1次的时候,各个都是1?其实是 C(i,0) 。
    2次的时候,是从1开始递增的。其实是 C(i+1,1) 。
    3次的时候,第i项的系数看起来像 C(i+2,2) 。
    4次的时候,第i项的系数看起来像 C(i+3,3) 。

    所以第m次时候,系数应该是c[i]=C(m-1+i,m-1)。

    m次: c[0]a[0], c[0]a[1]+c[1]a[0], c[0]a[2]+c[1]a[1]+c[2]a[0], c[0]a[3]+c[1]a[2]+c[2]a[1]+c[3]a[0]

    那么其实就是数组:

    a[0],a[1],a[2],a[3],a[4]...

    c[0],c[1],c[2],c[3],c[4]...

    做卷积的结果。

    所以就预处理组合数一波,然后直接NTT。

    然后其实x=2和x=3是对几个数组分开求这个前缀和。

    标程给出一个更方便的做法。直接跳着赋值,例如在x=2的时候,赋值c'[0]=c[0],c'[1]=0,c'[2]=c[1],c'[3]=0,c'[4]=c[2],c'[5]=0

    那么直接卷积就是:

    m次: c[0]a[0], c[0]a[1], c[0]a[2]+c[1]a[0], c[0]a[3]+c[1]a[1], c[0]a[4]+c[1]a[2]+c[2]a[0]

    从标程瞎改的快一倍的AC代码。

    #include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    
    const int MAXN = 2e6, mod = 998244353;
    
    inline int pow_mod(ll x, int n) {
        ll res;
        for(res = 1; n; n >>= 1, x = x * x % mod)
            if(n & 1)
                res = res * x % mod;
        return res;
    }
    
    inline int add_mod(int x, int y) {
        x += y;
        return x >= mod ? x - mod : x;
    }
    
    inline int sub_mod(int x, int y) {
        x -= y;
        return x < 0 ? x + mod : x;
    }
    
    void NTT(int a[], int n, int op) {
        for(int i = 1, j = n >> 1; i < n - 1; ++i) {
            if(i < j)
                swap(a[i], a[j]);
            int k = n >> 1;
            while(k <= j) {
                j -= k;
                k >>= 1;
            }
            j += k;
        }
        for(int len = 2; len <= n; len <<= 1) {
            int g = pow_mod(3, (mod - 1) / len);
            for(int i = 0; i < n; i += len) {
                int w = 1;
                for(int j = i; j < i + (len >> 1); ++j) {
                    int u = a[j], t = 1ll * a[j + (len >> 1)] * w % mod;
                    a[j] = add_mod(u, t), a[j + (len >> 1)] = sub_mod(u, t);
                    w = 1ll * w * g % mod;
                }
            }
        }
        if(op == -1) {
            reverse(a + 1, a + n);
            int inv = pow_mod(n, mod - 2);
            for(int i = 0; i < n; ++i)
                a[i] = 1ll * a[i] * inv % mod;
        }
    }
    
    int A[MAXN + 5], B[MAXN + 5];
    int Asize, Bsize;
    
    int pow2(int x) {
        int res = 1;
        while(res < x)
            res <<= 1;
        return res;
    }
    
    void convolution(int A[], int B[], int Asize, int Bsize) {
        int n = pow2(Asize + Bsize - 1);
        for(int i = Asize; i < n; ++i)
            A[i] = 0;
        for(int i = Bsize; i < n; ++i)
            B[i] = 0;
        NTT(A, n, 1);
        NTT(B, n, 1);
        for(int i = 0; i < n; ++i)
            A[i] = 1ll * A[i] * B[i] % mod;
        NTT(A, n, -1);
        return;
    }
    
    const int MAXM = 2e6;
    
    int fact[MAXM + 5], ifact[MAXM + 5];
    
    int C(int n, int m) {
        return m <= n ? (ll)fact[n] * ifact[m] % mod * ifact[n - m] % mod : 0;
    }
    
    void init_C() {
        fact[0] = 1;
        for(int i = 1; i <= MAXM; ++i)
            fact[i] = 1ll * fact[i - 1] * i % mod;
        ifact[MAXM] = pow_mod(fact[MAXM], mod - 2);
        for(int i = MAXM - 1; i >= 0; --i)
            ifact[i] = 1ll * ifact[i + 1] * (i + 1) % mod;
    }
    
    int main() {
    #ifdef Yinku
        freopen("Yinku.in", "r", stdin);
    #endif // Yinku
        init_C();
        int T;
        scanf("%d", &T);
        while(T--) {
            int n, m;
            scanf("%d%d", &n, &m);
            for(int i = 0; i < n; ++i) {
                scanf("%d", &A[i]);
            }
            int cnt[] = {0, 0, 0, 0};
            for(int i = 1; i <= m; ++i) {
                int x;
                scanf("%d", &x);
                cnt[x]++;
            }
            for(int c = 1; c <= 3; ++c) {
                if(cnt[c]) {
                    memset(B, 0, sizeof(B[0])*n);
                    for(int i = 0; i * c < n; ++i) {
                        B[i * c] = C(cnt[c] - 1 + i, i);
                    }
                    convolution(A, B, n, n);
                }
            }
            ll ans = 0;
            for(int i = 0; i < n; ++i)
                ans ^= 1ll * (i + 1) * A[i];
            printf("%lld
    ", ans);
        }
        return 0;
    }
    
    
  • 相关阅读:
    对"对DllRegisterServer的调用失败,错误代码为0x8007005"的解决办法
    Struts FileUpload 异常处理之Processing of multipart/formdata request failed.
    Java设计模式之简单工厂模式(转载)
    [转]VS 2008 中文"试用版"变"正式版"方法
    XP系统中多用户,自动登陆(一)
    常见Flash无法播放现象处理
    [转]顺利迈出职业成功的第一步
    VS2005的BUG:Cannot convert type 'ASP.login_aspx' to 'System.Web.UI.WebControls.Login'
    OO设计原则
    ASPX页面生成HTML的方法
  • 原文地址:https://www.cnblogs.com/Yinku/p/11232195.html
Copyright © 2011-2022 走看看